Obtain Generated Function Details
This example shows how to find the values of extra parameters in functions generated by prob2struct
.
Create a nonlinear problem and convert the problem to a structure using prob2struct
. Name the generated objective function and nonlinear constraint function.
x = optimvar('x',2); fun = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2; prob = optimproblem('Objective',fun); mycon = dot(x,x) <= 4; prob.Constraints.mycon = mycon; x0.x = [-1;1.5]; problem = prob2struct(prob,x0,'ObjectiveFunctionName','rosenbrock',... 'ConstraintFunctionName','circle2');
Examine the first line of the generated constraint function circle2
.
type circle2
function [cineq, ceq, cineqGrad, ceqGrad] = circle2(inputVariables, extraParams) %circle2 Compute constraint values and gradients % % [CINEQ, CEQ] = circle2(INPUTVARIABLES, EXTRAPARAMS) computes the % inequality constraint values CINEQ and the equality constraint values % CEQ at the point INPUTVARIABLES, using the extra parameters in % EXTRAPARAMS. % % [CINEQ, CEQ, CINEQGRAD, CEQGRAD] = circle2(INPUTVARIABLES, % EXTRAPARAMS) additionally computes the inequality constraint gradient % values CINEQGRAD and the equality constraint gradient values CEQGRAD % at the current point. % % Auto-generated by prob2struct on 05-Sep-2024 14:50:11 %% Compute inequality constraints. Hineq = extraParams{1}; fineq = extraParams{2}; rhsineq = extraParams{3}; Hineqmvec = Hineq*inputVariables(:); cineq = 0.5*dot(inputVariables(:), Hineqmvec) + dot(fineq, inputVariables(:)) + rhsineq; %% Compute equality constraints. ceq = []; if nargout > 2 %% Compute constraint gradients. % To call the gradient code, notify the solver by setting the % SpecifyConstraintGradient option to true. cineqGrad = Hineqmvec + fineq; ceqGrad = []; end
The circle2
function has a second input named extraParams
. To find the values of this input, use the functions
function on the function handle stored in problem.nonlcon
.
F = functions(problem.nonlcon)
F = struct with fields:
function: '@(x)fun(x,extraParams)'
type: 'anonymous'
file: '/mathworks/devel/bat/filer/batfs2566-0/Bdoc24b.2725827/build/runnable/matlab/toolbox/shared/adlib/+optim/+internal/+problemdef/+compile/snapExtraParams.p'
within_file_path: ''
workspace: {[1x1 struct]}
To access the extra parameters, view the workspace
field of F
.
ws = F.workspace
ws = 1x1 cell array
{1x1 struct}
Continue to extract the information at deeper levels until you see all the extra parameters.
ws1 = ws{1}
ws1 = struct with fields:
fun: @circle2
extraParams: {[2x2 double] [2x1 double] [-4]}
ep = ws1.extraParams
ep=1×3 cell array
{2x2 double} {2x1 double} {[-4]}
ep{1}
ans = 2x2 sparse double matrix (2 nonzeros)
(1,1) 2
(2,2) 2
ep{2}
ans = 2x1 sparse double column vector
All zero
ep{3}
ans = -4
Now you can read the circle2
file listing and understand what all of the variables mean.
Hineq = 2*speye(2); fineq = sparse([0;0]); rhsineq = -4;