Main Content

oobPredict

Predict out-of-bag responses of bagged regression ensemble

Description

Yfit = oobPredict(ens) returns a numeric column vector of predicted responses for the out-of-bag data in the bagged regression ensemble model ens. Yfit has size(ens.X,1) elements. You can find the indices of out-of-bag observations for the weak learner L by entering the command:

~ens.UseObsForLearner(:,L)

example

Yfit = oobPredict(ens,Name=Value) specifies additional options using one or more name-value arguments. For example, you can specify the indices of the weak learners to use for calculating the predicted responses.

Examples

collapse all

Compute the out-of-bag predictions for the carsmall data set. Display the first three terms of the fit.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of bagged regression trees.

ens = fitrensemble(X,MPG,'Method','Bag');

Find the out-of-bag predictions, and display the first three terms of the fit.

Yfit = oobPredict(ens);
Yfit(1:3) % First three terms
ans = 3×1

   15.5200
   14.5558
   15.0231

Input Arguments

collapse all

Bagged regression ensemble model, specified as a RegressionBaggedEnsemble model object trained with fitrensemble.

Name-Value Arguments

collapse all

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: oobPredict(ens,Learners=[1 2 3 5],UseParallel=true) specifies to use the first, second, third, and fifth learners in the ensemble, and to perform computations in parallel.

Indices of the weak learners in the ensemble to use with oobPredict, specified as a vector of positive integers in the range [1:ens.NumTrained]. By default, the function uses all learners.

Example: Learners=[1 2 4]

Data Types: single | double

Flag to run in parallel, specified as a numeric or logical 1 (true) or 0 (false). If you specify UseParallel=true, the oobPredict function executes for-loop iterations by using parfor. The loop runs in parallel when you have Parallel Computing Toolbox™.

Example: UseParallel=true

Data Types: logical

More About

collapse all

Extended Capabilities

expand all

Version History

Introduced in R2012b