sinc
Normalized sinc function
Syntax
Description
Examples
Sinc Function of Symbolic Inputs
syms x sinc(x)
ans = sin(pi*x)/(x*pi)
Show that sinc
returns 1
at
0
, 0
at other integer inputs, and exact symbolic
values for other inputs.
V = sym([-1 0 1 3/2]); S = sinc(V)
S = [ 0, 1, 0, -2/(3*pi)]
Convert the exact symbolic output to high-precision floating point by using
vpa
.
vpa(S)
ans = [ 0, 1.0, 0, -0.21220659078919378102517835116335]
Fourier Transforms Involving Sinc Function
Although sinc
appears in tables of Fourier
transforms, fourier
does not return sinc
in
output.
Show that fourier
transforms a pulse in terms of
sin
and cos
.
fourier(rectangularPulse(x))
ans = (cos(w/2)*1i + sin(w/2))/w - (cos(w/2)*1i - sin(w/2))/w
Show that fourier
transforms sinc
in terms
of heaviside
.
syms x fourier(sinc(x))
ans = (pi*heaviside(pi - w) - pi*heaviside(- w - pi))/pi
Plot Sinc Function
Plot the sinc function by using fplot
.
syms x fplot(sinc(x))

Rewrite Sinc Function to Other Functions
Rewrite the sinc
function to the exponential
function exp
by using rewrite
.
syms x rewrite(sinc(x),'exp')
ans = ((exp(-pi*x*1i)*1i)/2 - (exp(pi*x*1i)*1i)/2)/(x*pi)
Differentiate, Integrate, and Expand the Sinc Function
Differentiate, integrate, and expand sinc
by
using the diff
, int
, and
taylor
functions, respectively.
Differentiate sinc
.
syms x diff(sinc(x))
ans = cos(pi*x)/x - sin(pi*x)/(x^2*pi)
Integrate sinc
from -Inf
to
Inf
.
int(sinc(x),[-Inf Inf])
ans = 1
Integrate sinc
from -Inf
to
x
.
int(sinc(x),-Inf,x)
ans = sinint(pi*x)/pi + 1/2
Find the Taylor expansion of sinc
.
taylor(sinc(x))
ans = (pi^4*x^4)/120 - (pi^2*x^2)/6 + 1
Prove Identity Involving Sinc Function
Prove an identity by defining the identity as a condition and using
the isAlways
function to check the condition.
Prove this identity.
syms x cond = sinc(x) == 1/(gamma(1+x)*gamma(1-x)); isAlways(cond)
ans = logical 1
Input Arguments
x
— Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression
Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.
Version History
Introduced in R2018b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)