latex

LaTeX form of symbolic expression

Description

example

chr = latex(S) returns the LaTeX form of the symbolic expression S.

Examples

collapse all

Find the LaTeX form of the symbolic expressions x^2 + 1/x and sin(pi*x) + phi.

syms x phi
chr = latex(x^2 + 1/x)
chr =
'\frac{1}{x}+x^2'
chr = latex(sin(pi*x) + phi)
chr =
'\phi +\sin\left(\pi \,x\right)'

Find the LaTeX form of the symbolic array S.

syms x
S = [sym(1)/3 x; exp(x) x^2]
S =

$\left(\begin{array}{cc}\frac{1}{3}& x\\ {\mathrm{e}}^{x}& {x}^{2}\end{array}\right)$

chr = latex(S)
chr =
'\left(\begin{array}{cc} \frac{1}{3} & x\\ {\mathrm{e}}^x & x^2 \end{array}\right)'

Since R2021b

Compute several symbolic matrix variables, and then find their LaTeX form.

Create 3-by-3 and 3-by-1 symbolic matrix variables.

syms A 3 matrix
syms X [3 1] matrix

Find the Hessian matrix of ${X}^{T}AX$. Derived equations involving symbolic matrix variables appear in typeset as they would be in textbooks.

f = X.'*A*X
f = ${X}^{\mathrm{T}} A X$
H = diff(f,X,X.')
H = ${A}^{\mathrm{T}}+A$

Generate the LaTeX form of the symbolic matrix variables f and H.

chrf = latex(f)
chrf =
'{\textbf{X}}^{\mathrm{T}}\,\textbf{A}\,\textbf{X}'
chrH = latex(H)
chrH =
'{\textbf{A}}^{\mathrm{T}}+\textbf{A}'

Modify generated LaTeX by setting symbolic preferences using the sympref function.

Generate the LaTeX form of the expression $\pi$ with the default symbolic preference.

sympref('default');
chr = latex(sym(pi))
chr =
'\pi '

Set the 'FloatingPointOutput' preference to true to return symbolic output in floating-point format. Generate the LaTeX form of $\pi$ in floating-point format.

sympref('FloatingPointOutput',true);
chr = latex(sym(pi))
chr =
'3.1416'

Now change the output order of a symbolic polynomial. Create a symbolic polynomial and set 'PolynomialDisplayStyle' preference to 'ascend'. Generate LaTeX form of the polynomial sorted in ascending order.

syms x;
poly = x^2 - 2*x + 1;
sympref('PolynomialDisplayStyle','ascend');
chr = latex(poly)
chr =
'1-2\,x+x^2'

The preferences you set using sympref persist through your current and future MATLAB® sessions. Restore the default values by specifying the 'default' option.

sympref('default');

For $x$ and $y$ from $-2\pi$ to $2\pi$, plot the 3-D surface $y\mathrm{sin}\left(x\right)-x\mathrm{cos}\left(y\right)$. Store the axes handle in a by using gca. Display the axes box by using a.Box and set the tick label interpreter to latex.

Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2. Convert the axis limits to precise multiples of pi/2 using round and get the symbolic tick values in S. Display the ticks by setting the XTick property of a to S. Create the LaTeX labels for the x-axis by using arrayfun to apply latex to S and then concatenating $. Display the labels by assigning them to the XTickLabel property of a. Repeat these steps for the y-axis. Set the x- and y-axes labels and the title using the latex interpreter. syms x y f = y.*sin(x)-x.*cos(y); fsurf(f,[-2*pi 2*pi]) a = gca; a.TickLabelInterpreter = 'latex'; a.Box = 'on'; a.BoxStyle = 'full'; S = sym(a.XLim(1):pi/2:a.XLim(2)); S = sym(round(vpa(S/pi*2))*pi/2); a.XTick = double(S); a.XTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$'); S = sym(a.YLim(1):pi/2:a.YLim(2)); S = sym(round(vpa(S/pi*2))*pi/2); a.YTick = double(S); a.YTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$'); xlabel('x','Interpreter','latex'); ylabel('y','Interpreter','latex'); zlabel('z','Interpreter','latex'); title(['$' latex(f) '$for$x$and$y$in$[-2\pi,2\pi]\$'],'Interpreter','latex') Input Arguments

collapse all

Input, specified as a symbolic number, variable, vector, array, function, expression, or symbolic matrix variable (since R2021b).