Solve a nonlinear equation
2 views (last 30 days)
Show older comments
Hi, Could you please help me to solve this equation in terms of "q"
1.082 [ (q-1) log((3/4 -3q/4)/(1-3q/4))+ q*log((3q/4) *(3/4 -3q/4)] + 1.4427[-3log(1-q/2) *((q/2) -1)+(q/2+1/2)^2 *log(q/2+1/2)- (3q/4 -1)*log(1-3q/4)- (3q/4+1/4)*log(3q/4+1/4)] + 0.7213[q*log(q/2)* ( -q-3/2 +1/q)+ (-q-1)*log(q/2 +1/2) + q*(-q/2+1/2)*log(1/2-q/2)-3*log(1-q/2)-(q-1)*log(1/2 - q/2)] -0.36 *[(q-1)^2*log(1/2 - q/2)]=0
2 Comments
Accepted Answer
Walter Roberson
on 18 Nov 2013
If you assume natural logs, then there are no non-complex solutions.
The value of the expression (assuming natural logs) is negative between 0 and 1 (going to negative infinity at those two bounds.) Outside of that range, the expression is real-valued at exactly one point near -3.000138648 and at exactly one point near 1.851008154. At those two exceptional locations, the expression has positive non-zero values. The fact that there are negative values and positive values does not, however, imply that there are points at which the function is real-valued and 0, as the function is discontinuous.
The results have the same shape if log10 is used instead of ln.
More Answers (3)
Andrei Bobrov
on 18 Nov 2013
syms q
>> ex = 1.082*( (q-1)*log((3/4 -3*q/4)/(1-3*q/4))+ q*log((3*q/4) *(3/4 -3*q/4)) + 1.4427*(-3*log(1-q/2) *((q/2) -1)+(q/2+1/2)^2 *log(q/2+1/2)- (3*q/4 -1)*log(1-3*q/4)- (3*q/4+1/4)*log(3*q/4+1/4)) + 0.7213*(q*log(q/2)* ( -q-3/2 +1/q)+ (-q-1)*log(q/2 +1/2) + q*(-q/2+1/2)*log(1/2-q/2)-3*log(1-q/2)-(q-1)*log(1/2 - q/2)) -0.36 *((q-1)^2*log(1/2 - q/2)));
>>solve(ex,q)
ans =
- 3.7601288392107154402269169733539 + 0.46896675884329957486140629064384*i
0 Comments
cagatay yilmaz
on 23 Apr 2017
Hello,
Could you guys help me the solve following problem. This is the dispersion equation for a symmetric lamb wave. I am looking for the z values for different f (frequencies)? I have to find something similar to Fig 1 a.
close all
clear all
clc
%cl longitudunal wave speed
%ct transversal wave speed
%cp phase velocity of wave
%cg group velocity of wave
% z=ct/cp;
pi=3.14;
nu=0.33;% poisson ratio
ro=2700;%density kg/m3
E=70e9;% elastic modulus Pa
mu=E/(2*(1+nu)); %shear modulus
cl=((E*(1-nu))/(ro*(1+nu)*(1-2*nu)))^(0.5);
ct=(mu/ro).^(0.5);
k=ct/cl;
f=10:10:3e6;
w=2*pi*f;
d=(w*0.8e-3)/ct;
fzero (@(z) (2*z.^2-1).^2*(sin(sqrt((1-z.^2))*d))*cos(sqrt((k.^2-z.^2.*d)))-(sin(sqrt (k.^2-z.^2.*d)))*cos(sqrt((1-z.^2))*d)*(4*z.^2)*sqrt(1-z.^2)*sqrt(k.^2-z.^2),1)
2 Comments
cagatay yilmaz
on 23 Apr 2017
I have started a new question
https://www.mathworks.com/matlabcentral/answers/336873-nonlinear-tangent-trigonemetric-equation
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!