Best fit line in log-log scale

86 views (last 30 days)
Yen Tien Yap
Yen Tien Yap on 24 Aug 2021
Commented: Simon Chan on 24 Aug 2021
Hi, I want to create a straight best fit line in the first portion of the graph and I don't want a curve best fit line, what should I do? Thank you.
rho=1000; %[kg/m3]
D=12.6*10^-3; %[m]
L=1.5; %[m]
miu=0.001; %[Pas]
g=9.81;
A=pi*D^2/4;
Q0=[1600,1500,1400,1300,1200,1100,1000,900,800,700,600,500,400,300,240,220,...
200,180,160,140,120,100,80,70,70,60,50,40,30,20,10];%[L/hr]
Q=Q0/(1000*3600);
%Wet-wet digital gauge
P_dpg=[20.1,17.5,15.7,13.1,11.6,9.3,8,6.5,5.3,4.1,3,2.1,1.3,0.8]; %[kPa]
%Inverted manometer
h=[6.9,5.9,5,4.1,3.2,2.6,1.8,1.3,0.7,0.5]; %[cm]
h_m=h/100;
P_mtr=rho*g*h_m;
%Capsuhelic gauge
P_cpg=[33,31,28,23,17,12,8];
P=[P_dpg.*1000,P_mtr,P_cpg];
V=Q/A;
Re=rho*V*D/miu;
f=P*D./(2*rho*L*V.^2);
X=Re(25:31);
Y=f(25:31);
p=polyfit(X,Y,1);
y=polyval(p,X);
figure(1)
loglog(Re,f,'x','LineWidth',1)
hold on
loglog(X,y,'--')
grid on
xlim([10^2 10^5])
ylim([0.001 0.1])
xlabel('Reynolds number Re')
ylabel('Friction factor f')
title('f vs Re')

Accepted Answer

Simon Chan
Simon Chan on 24 Aug 2021
Like this?
p=polyfit(log(X),log(Y),1);
y=polyval(p,log(X));
figure(1)
loglog(Re,f,'x','LineWidth',1)
hold on
loglog(X,exp(y),'--')
grid on
  2 Comments
Yen Tien Yap
Yen Tien Yap on 24 Aug 2021
Yes. It is. Thank you so much. Could you briefly explain why would you code it like that?
Simon Chan
Simon Chan on 24 Aug 2021
Simply because you are using loglog scale, so you need the equation:
(log y) = m(log x) + c for function polyfit to fit into a straight line.
This is same for polyval where variable y (but not log(y)) is calculated from (log x) so you need to convert it using exponential in the figure.

Sign in to comment.

More Answers (0)

Categories

Find more on Line Plots in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!