How I can use the eig function for nonsymmetric matrices?

4 views (last 30 days)
Hi,
I have a non symmetric matrix and I try to figure out which option of the eig I should use? Thank you

Accepted Answer

Chris Turnes
Chris Turnes on 7 Aug 2014
The eig function does not require any additional options for nonsymmetric matrices. There is an example of this in the documentation for eig:
>> A = gallery('circul',3)
A =
1 2 3
3 1 2
2 3 1
>> [V,D] = eig(A);
>> V\A*V % verify that V diagonalizes A
ans =
6.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i
-0.0000 - 0.0000i -1.5000 + 0.8660i -0.0000 - 0.0000i
-0.0000 + 0.0000i -0.0000 + 0.0000i -1.5000 - 0.8660i
  2 Comments
Traian Preda
Traian Preda on 7 Aug 2014
Hi,
Thank you for the answer. But for this matrix is I am using eig and I try to rebuilted back using the eigenvectors and eigenvalues I get something else than the original matrix. Therefore I think that the right eigenvectors I get using eig are wrong. I tried with svd an that it seems to work. eigenvectors I get using eig are wrong. I tried with svd an that it seems to work. Thank you
a=[-0.309042200000000 -0.00112050000000000 0.0146369900000000 0.00801360000000000 0.00951086000000000 0.0119207900000000 0.00269338000000000 0.00899029000000000 0.0120456200000000 0.00333142000000000 0.00291344000000000 0.00162112000000000;-0.00207730000000000 -0.120495000000000 0.00591404000000000 0.00262672000000000 0.00434139000000000 0.00592824000000000 -0.000548390000000000 0.00488849000000000 0.00706523000000000 0.000733070000000000 -0.00120430000000000 -0.00733420000000000;0.0106811400000000 0.00310927000000000 -0.321451300000000 0.00799418000000000 0.0146429700000000 0.0204037200000000 -0.00334158000000000 0.00629642000000000 0.00855662000000000 0.00208133000000000 0.00138921000000000 -0.000783360000000000;0.0500343300000000 0.0226932300000000 0.100244500000000 -1.21203000000000 0.0792224400000000 0.114310000000000 -0.00723418000000000 0.0281160000000000 0.0379308900000000 0.00987513000000000 0.00770613000000000 0.000929510000000000;0.0301291200000000 0.0162645000000000 0.0635045000000000 0.0263079900000000 -0.887144100000000 0.0801669700000000 -0.00166388000000000 0.0164896800000000 0.0221528100000000 0.00598660000000000 0.00502368000000000 0.00203046000000000;0.0227449100000000 0.0146744200000000 0.0508353200000000 0.0247133000000000 0.0463564800000000 -0.614663700000000 0.00122573000000000 0.0120418600000000 0.0160892700000000 0.00455634000000000 0.00414577000000000 0.00288858000000000;0.0577366400000000 -0.0267536800000000 0.0517164700000000 0.00116696000000000 0.0557495900000000 0.0914988300000000 -1.13997600000000 0.0414240200000000 0.0577823100000000 0.0105785100000000 0.00108611000000000 -0.0288816700000000;0.0615821900000000 0.0583618300000000 0.0511852600000000 0.0289944100000000 0.0324672100000000 0.0399205500000000 0.0120189900000000 -1.40059100000000 0.107321100000000 -0.0418258200000000 0.00794198000000000 0.0169553600000000;0.0492929500000000 0.0474342600000000 0.0408789900000000 0.0231899600000000 0.0259024200000000 0.0318212600000000 0.00968903000000000 0.0491629300000000 -1.06225300000000 -0.0527534900000000 0.00729352000000000 0.0141123100000000;0.0838631200000000 0.0475778400000000 0.0737786900000000 0.0403001400000000 0.0480159300000000 0.0602565500000000 0.0133273100000000 -0.0583065100000000 -0.0873152600000000 -1.09025000000000 -0.0307301500000000 -0.000891240000000000;0.0797492100000000 0.00977151000000000 0.0746899400000000 0.0392298400000000 0.0498881100000000 0.0638530000000000 0.00929280000000000 0.0737743300000000 0.117205400000000 -0.0110758600000000 -1.12388200000000 -0.0275144900000000;0.000883260000000000 -0.00104474000000000 0.000974480000000000 0.000463960000000000 0.000689950000000000 0.000920180000000000 -6.96000000000000e-06 0.000773320000000000 0.00111838000000000 0.000114490000000000 -0.000194340000000000 -0.174181000000000;]
Chris Turnes
Chris Turnes on 7 Aug 2014
Edited: Chris Turnes on 7 Aug 2014
How are you trying to rebuild the matrix from the eigendecomposition? Note that since the matrix is not symmetric, it is not true that V^{-1} = V^H. Therefore, to reconstruct the matrix, you should instead try
>> Ar = V*D/V; % Ar = V*D*V^{-1}
which is the proper eigendecomposition. When I try this with the matrix you posted, I get:
>> Ar = V*D/V; % Ar = V*D*V^{-1}
>> norm(a - Ar)
ans =
2.4546e-15

Sign in to comment.

More Answers (0)

Categories

Find more on Beamforming and Direction of Arrival Estimation in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!