Finding Optimal Number Of Clusters for Kmeans

66 views (last 30 days)
jameskl
jameskl on 26 Aug 2014
Edited: Walter Roberson on 23 Jun 2022
I want to find the number of clusters for my data for which the correlation is above .9. I know you can use a sum of squared error (SSE) scree plot but I am not sure how you create one in Matlab. Also, are there any other methods?

Answers (2)

Taro Ichimura
Taro Ichimura on 1 Jun 2016
Hello,
you have 2 way to do this in MatLab, use the evalclusters() and silhouette() to find an optimal k, you can also use the elbow method (i think you can find code in matlab community) check matlab documentation for examples, and below
% example
load fisheriris
clust = zeros(size(meas,1),6);
for i=1:6
clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...
'replicate',5);
end
va = evalclusters(meas,clust,'CalinskiHarabasz')

Pamudu Ranasinghe
Pamudu Ranasinghe on 19 Jun 2022
Refer "evalclusters" function
eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',1:6);
Optimal_K = eva.OptimalK;

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!