I have initial value problem that I have to write the right side into a vector function
8 views (last 30 days)
Show older comments
I have DEs that I need to write into a vector function and use
ode45
to approximate the solution for the initial value problem on the interval 0 < t < 12. This is what I have so far
w = @(t,y) 5 + (z/5) - ((4*y)/(20+3*t))
w1 = @(t,z) ((4*y)/(20+3*t)) - (2*z)/5
[t,y] = ode45(w, [0, 12], 0)
[t,z] = ode45(w1, [0, 12], 20)
0 Comments
Answers (1)
Cris LaPierre
on 19 Nov 2021
Edited: Cris LaPierre
on 19 Nov 2021
The hints are in the instructions. You are not solving the problem the way you are asked to.
Because your equations are coupled, you have to solve them simultaneously. To do that, create an odefun that solves both equations. The input (initial conditions) and output (solution of both equations) are vectors. The output must be a column vector.
Adapting it to your case, you could designate y(1) to be y in your equations, and y(2) to be z. As long as the order is consistant and matches your y0 input, it doesn't matter which one is y and which one is z.
3 Comments
Cris LaPierre
on 23 Nov 2021
Just run it. What is it you want to do with the results? Perhaps a plot? See below.
y0 = [0;20];
tspan = [0,12];
[t,y] = ode45(@odefun,tspan,y0);
plot(t,y)
legend('y','z')
function dydt = odefun(t,y)
dydt = zeros (2,1);
dydt(1) = 5 + y(2)/5 - 4*y(1)/(20+3*t);
dydt(2) = 4*y(1)/(20+3*t) - 2*y(2)/5;
end
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!