Integral of the product of integrals

5 views (last 30 days)
Morteza
Morteza on 16 Jan 2022
Edited: Torsten on 17 Jan 2022
I1 = integral [f1(x,y), x, a, b]
I2 = integral [f2(x,y), x, a, b]
I3 = integral [f3(x,y), x, a, b]
integral(I1*I2*I3, y, c, d)
Note that a,b,c,d are constant. Integrals have no analytical solution.

Accepted Answer

Matt J
Matt J on 16 Jan 2022
Edited: Matt J on 16 Jan 2022
I=@(y,f) integral( @(x)f(x,y), a, b);
I123=@(y) I(y,f1) .* I(y,f2) .* I(y,f3);
integral(I123, c, d)
  2 Comments
Morteza
Morteza on 17 Jan 2022
f1= @(y, teta) y.*exp(teta.^2);
f2=@(y, teta) y.*exp(teta.^3);
f3=@(y, teta) y.*exp(teta.^4);
I=@(teta,f) integral( @(y)f(y, teta), 0, 50);
I123=@(teta) I(teta,f1) .* I(teta,f2) .* I(teta,f3);
integral(I123, 0, 50 )
This is an example based on your code. Error:
Error using integralCalc/finalInputChecks (line 515)
Output of the function must be the same size as the input. If FUN is an array-valued integrand,
set the 'ArrayValued' option to true.
Torsten
Torsten on 17 Jan 2022
Edited: Torsten on 17 Jan 2022
integral(I123, 0, 50,'ArrayValued',true )
And you shouldn't integrate exp(teta^2),exp(teta^3) or exp(teta^4) up to teta = 50.

Sign in to comment.

More Answers (0)

Categories

Find more on Matrix Computations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!