How to differentiate vectors
2 views (last 30 days)
Show older comments
Ikechi Ndamati
on 15 Feb 2022
Commented: Star Strider
on 17 Feb 2022
Hello, please I have a code with lambda and n given below. Please how do I obtain d(n)/d(lambda) and d^2(n)/d(lambda)^2 i.e. the first and second deriviative of n wrt lambda?
lambda = linspace(0.5,2.5);
n = [1.55155531233953 1.54949576778463 1.54767969992980 1.54606941077293 1.54463432037936 1.54334939304258 1.54219395936135 1.54115082328366 1.54020557725122 1.53934607132757 1.53856199764777 1.53784456219577 1.53718622338909 1.53658048225698 1.53602171281363 1.53550502400216 1.53502614662547 1.53458134019413 1.53416731575664 1.53378117163556 1.53342033964695 1.53308253988297 1.53276574252631 1.53246813546774 1.53218809673566 1.53192417093373 1.53167504903131 1.53143955097005 1.53121661064518 1.53100526289637 1.53080463220578 1.53061392285076 1.53043241030050 1.53025943367952 1.53009438914900 1.52993672407995 1.52978593191141 1.52964154760293 1.52950314360382 1.52937032627300 1.52924273269261 1.52912002782641 1.52900190198108 1.52888806853379 1.52877826189461 1.52867223567629 1.52856976104774 1.52847062525013 1.52837463025771 1.52828159156731 1.52819133710247 1.52810370622009 1.52801854880867 1.52793572446860 1.52785510176605 1.52777655755305 1.52769997634709 1.52762524976427 1.52755227600092 1.52748095935889 1.52741120981038 1.52734294259859 1.52727607787089 1.52721054034140 1.52714625898047 1.52708316672849 1.52702120023196 1.52696029959983 1.52690040817834 1.52684147234282 1.52678344130489 1.52672626693392 1.52666990359143 1.52661430797744 1.52655943898778 1.52650525758144 1.52645172665720 1.52639881093877 1.52634647686784 1.52629469250434 1.52624342743341 1.52619265267854 1.52614234062043 1.52609246492120 1.52604300045342 1.52599392323372 1.52594521036064 1.52589683995631 1.52584879111185 1.52580104383610 1.52575357900747 1.52570637832878 1.52565942428470 1.52561270010188 1.52556618971130 1.52551987771288 1.52547374934221 1.52542779043906 1.52538198741785 1.52533632723963];
plot(n,lambda)
ylabel('n','FontWeight','bold','FontSize',14)
xlabel('lambda','FontWeight','bold','FontSize',14)
0 Comments
Accepted Answer
Star Strider
on 15 Feb 2022
lambda = linspace(0.5,2.5);
n = [1.55155531233953 1.54949576778463 1.54767969992980 1.54606941077293 1.54463432037936 1.54334939304258 1.54219395936135 1.54115082328366 1.54020557725122 1.53934607132757 1.53856199764777 1.53784456219577 1.53718622338909 1.53658048225698 1.53602171281363 1.53550502400216 1.53502614662547 1.53458134019413 1.53416731575664 1.53378117163556 1.53342033964695 1.53308253988297 1.53276574252631 1.53246813546774 1.53218809673566 1.53192417093373 1.53167504903131 1.53143955097005 1.53121661064518 1.53100526289637 1.53080463220578 1.53061392285076 1.53043241030050 1.53025943367952 1.53009438914900 1.52993672407995 1.52978593191141 1.52964154760293 1.52950314360382 1.52937032627300 1.52924273269261 1.52912002782641 1.52900190198108 1.52888806853379 1.52877826189461 1.52867223567629 1.52856976104774 1.52847062525013 1.52837463025771 1.52828159156731 1.52819133710247 1.52810370622009 1.52801854880867 1.52793572446860 1.52785510176605 1.52777655755305 1.52769997634709 1.52762524976427 1.52755227600092 1.52748095935889 1.52741120981038 1.52734294259859 1.52727607787089 1.52721054034140 1.52714625898047 1.52708316672849 1.52702120023196 1.52696029959983 1.52690040817834 1.52684147234282 1.52678344130489 1.52672626693392 1.52666990359143 1.52661430797744 1.52655943898778 1.52650525758144 1.52645172665720 1.52639881093877 1.52634647686784 1.52629469250434 1.52624342743341 1.52619265267854 1.52614234062043 1.52609246492120 1.52604300045342 1.52599392323372 1.52594521036064 1.52589683995631 1.52584879111185 1.52580104383610 1.52575357900747 1.52570637832878 1.52565942428470 1.52561270010188 1.52556618971130 1.52551987771288 1.52547374934221 1.52542779043906 1.52538198741785 1.52533632723963];
plot(n,lambda)
ylabel('\lambda','FontWeight','bold','FontSize',14)
xlabel('n','FontWeight','bold','FontSize',14)
dndlambda = gradient(n) ./ gradient(lambda); % First Numerical Derivative
d2ndlambda2 = gradient(dndlambda) ./ gradient(lambda); % Second NMumerical Derivative
figure
yyaxis left
plot(lambda, n, 'DisplayName','Original Data')
yyaxis right
plot(lambda, dndlambda, 'DisplayName','First Derivative')
hold on
plot(lambda, d2ndlambda2, 'DisplayName','Second Derivative')
hold off
grid
xlabel('\lambda','FontWeight','bold','FontSize',14)
legend('Location','best')
Note that the first asrgument to plot is the independent variable and the second argument is the dependent variable. I corrected the axis labels in the firsst plot to reflect this.
I used yyaxis because the magnitudes between the original data and the derivatives are significantly different.
.
2 Comments
More Answers (0)
See Also
Categories
Find more on Line Plots in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!