Calculate TP,TN,FN,FP F1 score for above code

12 views (last 30 days)
Hello Everyone, the below is code snipped, however my f1 scores exceed 1, please help me
clc;
warning off
imds=imageDatastore('Train',...
'IncludeSubFolders',true,'LabelSource','foldername');
[imdsTrain,imdsValidation]=splitEachLabel(imds,0.8,'randomized');
g=alexnet;
labels='foldername';
layers=g.Layers;
inputSize = g.Layers(1).InputSize;
layers(23)=fullyConnectedLayer(4);
layers(25)=classificationLayer;
layer='fc8';
allImages=imageDatastore('Train','IncludeSubfolders',true, 'LabelSource','foldernames');
I=read(allImages);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsValidation);
opts=trainingOptions('sgdm','InitialLearnRate',0.001,'MaxEpochs',12,'MiniBatchSize',64,'Plots','training-progress','ValidationData',augimdsTest);
myNet1=trainNetwork(allImages,layers,opts);
featuresTrain=activations(g,imdsTrain,layer,'OutputAs','rows');
featuresTest=activations(g,imdsValidation,layer,'OutputAs','rows');
svmtrain=fitcecoc(featuresTrain,imdsTrain.Labels);
YPred=predict(svmtrain,featuresTest);
plotconfusion(imdsValidation.Labels,YPred);
[cm,order] = confusionmat(imdsValidation.Labels,YPred);
YAct=imdsValidation.Labels;
cmt=cm';
diagonal=diag(cmt);
sum_of_rows=sum(cmt,1);
precision=diagonal./sum_of_columns;
overall_precision=mean(precision);
sum_of_columns=sum(cmt,2);
recall=diagonal./sum_of_rows;
overall_recall=mean(recall);
f1_score=2*((overall_precision*overall_recall)/(overall_precision+overall_recall));
save myNet1;

Answers (0)

Categories

Find more on Elementary Math in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!