plot function of two variables as one variable

2 views (last 30 days)
I want to plot theta in the middle of the layer by setting z=d/2, for t=0..100. I have attached the snapshot of what I'm expecting. See my code below:
%% initialization
clear
clc
close all
%% Model parameters
global k1 eta1 alpha3 gamma1 d N Phi xi h A B C G
k1 = 6*10^(-12); % elastic constant
eta1 = 0.0240; % viscosity
xi = 0.06; % activity parameter
alpha3 = -0.001104; % viscosity
gamma1 = 0.1093; % viscosity
Theta = 0.0001;
% Simplify model parameters
A = k1/gamma1;
B = alpha3/gamma1;
C = eta1 - alpha3*B;
G = alpha3*A;
d = 0.0002;
N = 20;
%% Numerical setup
% step size
h = d/N;
% t span
tspan = [0 100];
% range of z
%z=linspace(0,d/2,N+1)
z=linspace(0,d,N+1);
% initial conditions
theta0 = Theta*sin(pi*z/d);
v0 = zeros(1,N+1);
theta0_int=theta0(2:N);
v0_int=v0(2:N);
u0 = [theta0_int'; v0_int'];
% Constant mass matrix M: We use M to represent the left hand side of the system of equations.
M1=eye(N-1,N-1);
M2=zeros(N-1,N-1);
M=[M1 M2;M2 M2];
% Boundary Conditions
Phi = 0;
%% ode solver
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode15s(@lcode1,tspan,u0, options);
% Extract the solution for theta and v
theta = [Phi*ones(length(t), 1) y(:,1:N-1) Phi*ones(length(t), 1)];
v = [zeros(length(t), 1) y(:,N:(2*N-2)) zeros(length(t), 1)];
%% Plot the solution.
figure
plot(z, theta(end,:))
xlabel('z(\mum)')
ylabel('\theta(z,t)(rad)')
title('Director angle plot')
%% Functions
% Right hand side of the ODEs: F(U)
function rhsode = lcode1(t,y)
global Phi xi h A B C G N
% initialize theta and v
theta = y(1:(N-1));
v = y(N:(2*N-2));
% theta equations
% theta equations
% for the positon to the right of the left hand boundary z=0
rhsode(1,1) = (A/(h^2))*(theta(2)-2*theta(1)+ Phi) - (B/(2*h))*(v(2)-0);
% for all other internal positions 0<z<d
for i=2:(N-2)
rhsode(i,1) = (A/(h^2))*(theta(i+1)-2*theta(i)+theta(i-1)) - (B/(2*h))*(v(i+1)-v(i-1));
end
% for the positon to the left of the right hand boundary z=d
rhsode(N-1,1) = (A/(h^2))*(Phi-2*theta(N-1)+ theta(N-2)) - (B/(2*h))*(0-v(N-2));
% v equations [REMEMBER theta the RHS index for the v equations is N-1 more than the indices of the theta and v variables in this function]
% for the two positons to the right of the left hand boundary z=0
rhsode(N,1) = (G/(h^3))*(-Phi + 3*theta(1) - 3*theta(2) + theta(3)) + (C/(h^2))*(v(2) -2*v(1)+ 0) + (xi/(2*h))*(theta(2)-Phi);
rhsode(N+1,1) = (G/(2*h^3))*(Phi - 2*theta(1) + 2*theta(3)- theta(4)) + (C/(h^2))*(v(3) -2*v(2) + v(1)) + (xi/(2*h))*(theta(3)-theta(1));
% for all other internal positions 0<z<d
for i=(N+2):(2*N-4)
rhsode(i,1) = (G/(2*h^3))*(theta(i-2-(N-1)) - 2*theta(i-1-(N-1)) + 2*theta(i+1-(N-1))- theta(i+2-(N-1))) +(C/(h^2))*(v(i+1-(N-1)) -2*v(i-(N-1)) + v(i-1-(N-1))) + (xi/(2*h))*(theta(i+1-(N-1))-theta(i-1-(N-1)));
end
% for the two positons to the left of the right hand boundary z=d
rhsode(2*N-3,1) = (G/(2*h^3))*(theta(N-4) - 2*theta(N-3) + 2*theta(N-1) - Phi) +(C/(h^2))*(v(N-1) -2*v(N-2) + v(N-3)) + (xi/(2*h))*(theta(N-1)-theta(N-3));
rhsode(2*N-2,1) = (G/(h^3))*(-theta(N-3) + 3*theta(N-2) - 3*theta(N-1) + Phi) +(C/(h^2))*(0 -2*v(N-1) + v(N-2)) + (xi/(2*h))*(Phi-theta(N-2));
end

Accepted Answer

Torsten
Torsten on 17 Aug 2022
Edited: Torsten on 17 Aug 2022
%% initialization
clear
clc
close all
%% Model parameters
global k1 eta1 alpha3 gamma1 d N Phi xi h A B C G
k1 = 6*10^(-12); % elastic constant
eta1 = 0.0240; % viscosity
xi = 0.06; % activity parameter
alpha3 = -0.001104; % viscosity
gamma1 = 0.1093; % viscosity
Theta = 0.0001;
% Simplify model parameters
A = k1/gamma1;
B = alpha3/gamma1;
C = eta1 - alpha3*B;
G = alpha3*A;
d = 0.0002;
N = 20;
%% Numerical setup
% step size
h = d/N;
% t span
tspan = [0 230];
% range of z
%z=linspace(0,d/2,N+1)
z=linspace(0,d,N+1);
% initial conditions
theta0 = Theta*sin(pi*z/d);
v0 = zeros(1,N+1);
theta0_int=theta0(2:N);
v0_int=v0(2:N);
u0 = [theta0_int'; v0_int'];
% Constant mass matrix M: We use M to represent the left hand side of the system of equations.
M1=eye(N-1,N-1);
M2=zeros(N-1,N-1);
M=[M1 M2;M2 M2];
% Boundary Conditions
Phi = 0;
%% ode solver
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode15s(@lcode1,tspan,u0, options);
theta_middle = y(:,N/2);
plot(t,theta_middle)
% Extract the solution for theta and v
%theta = [Phi*ones(length(t), 1) y(:,1:N-1) Phi*ones(length(t), 1)];
%v = [zeros(length(t), 1) y(:,N:(2*N-2)) zeros(length(t), 1)];
%% Plot the solution.
%figure
%plot(z, theta(end,:))
%xlabel('z(\mum)')
%ylabel('\theta(z,t)(rad)')
%title('Director angle plot')
%% Functions
% Right hand side of the ODEs: F(U)
function rhsode = lcode1(t,y)
global Phi xi h A B C G N
% initialize theta and v
theta = y(1:(N-1));
v = y(N:(2*N-2));
% theta equations
% theta equations
% for the positon to the right of the left hand boundary z=0
rhsode(1,1) = (A/(h^2))*(theta(2)-2*theta(1)+ Phi) - (B/(2*h))*(v(2)-0);
% for all other internal positions 0<z<d
for i=2:(N-2)
rhsode(i,1) = (A/(h^2))*(theta(i+1)-2*theta(i)+theta(i-1)) - (B/(2*h))*(v(i+1)-v(i-1));
end
% for the positon to the left of the right hand boundary z=d
rhsode(N-1,1) = (A/(h^2))*(Phi-2*theta(N-1)+ theta(N-2)) - (B/(2*h))*(0-v(N-2));
% v equations [REMEMBER theta the RHS index for the v equations is N-1 more than the indices of the theta and v variables in this function]
% for the two positons to the right of the left hand boundary z=0
rhsode(N,1) = (G/(h^3))*(-Phi + 3*theta(1) - 3*theta(2) + theta(3)) + (C/(h^2))*(v(2) -2*v(1)+ 0) + (xi/(2*h))*(theta(2)-Phi);
rhsode(N+1,1) = (G/(2*h^3))*(Phi - 2*theta(1) + 2*theta(3)- theta(4)) + (C/(h^2))*(v(3) -2*v(2) + v(1)) + (xi/(2*h))*(theta(3)-theta(1));
% for all other internal positions 0<z<d
for i=(N+2):(2*N-4)
rhsode(i,1) = (G/(2*h^3))*(theta(i-2-(N-1)) - 2*theta(i-1-(N-1)) + 2*theta(i+1-(N-1))- theta(i+2-(N-1))) +(C/(h^2))*(v(i+1-(N-1)) -2*v(i-(N-1)) + v(i-1-(N-1))) + (xi/(2*h))*(theta(i+1-(N-1))-theta(i-1-(N-1)));
end
% for the two positons to the left of the right hand boundary z=d
rhsode(2*N-3,1) = (G/(2*h^3))*(theta(N-4) - 2*theta(N-3) + 2*theta(N-1) - Phi) +(C/(h^2))*(v(N-1) -2*v(N-2) + v(N-3)) + (xi/(2*h))*(theta(N-1)-theta(N-3));
rhsode(2*N-2,1) = (G/(h^3))*(-theta(N-3) + 3*theta(N-2) - 3*theta(N-1) + Phi) +(C/(h^2))*(0 -2*v(N-1) + v(N-2)) + (xi/(2*h))*(Phi-theta(N-2));
end
  5 Comments
University Glasgow
University Glasgow on 17 Aug 2022
I tried this ax = gca;
% Requires R2020a or later
exportgraphics(ax,'myplot.png','Resolution',300) but is saving only one of my plot.
%% initialization
clear
clc
close all
%% Model parameters
global k1 eta1 alpha3 gamma1 d N Phi xi h A B C G
k1 = 6*10^(-12); % elastic constant
eta1 = 0.0240; % viscosity
xi = -1; % activity parameter
alpha3 = -0.001104; % viscosity
gamma1 = 0.1093; % viscosity
Theta = 0.0001;
% Simplify model parameters
A = k1/gamma1;
B = alpha3/gamma1;
C = eta1 - alpha3*B;
G = alpha3*A;
d = 0.0002;
N = 200;
%% Numerical setup
% step size
h = d/N;
% t span
tspan = [0 100];
% range of z
%z=linspace(0,d/2,N+1)
z=linspace(0,d,N+1);
% initial conditions
theta0 = Theta*sin(pi*z/d);
v0 = zeros(1,N+1);
theta0_int=theta0(2:N);
v0_int=v0(2:N);
u0 = [theta0_int'; v0_int'];
% Constant mass matrix M: We use M to represent the left hand side of the system of equations.
M1=eye(N-1,N-1);
M2=zeros(N-1,N-1);
M=[M1 M2;M2 M2];
% Boundary Conditions
Phi = 0;
%% ode solver
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode15s(@lcode1,tspan,u0, options);
theta_middle = y(:,N/2); % theta at the middle of the layer (i.e., z=d/2)
% Extract the solution for theta and v
theta = [Phi*ones(length(t), 1) y(:,1:N-1) Phi*ones(length(t), 1)];
v = [zeros(length(t), 1) y(:,N:(2*N-2)) zeros(length(t), 1)];
%% Plot the solution.
figure
subplot(2,2,1)
plot(z, theta(1:5,:))
xlabel('z(\mum)')
ylabel('\theta(z,t)(rad)')
title('Director angle','FontSize',10)
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,2)
plot(z, v(1:5,:))
xlabel('z(\mum)')
ylabel('v(z,t)(m/s)')
title('Flow velocity')
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,3)
plot(t,theta_middle)
xlabel('z(\mum)')
ylabel('\theta(d/2,t)(rad)')
title('Director angle at the middle of the layer', 'FontSize',6)
ax = gca;
% Requires R2020a or later
exportgraphics(ax,'modelplot.png','Resolution',300)
%% Functions
% Right hand side of the ODEs: F(U)
function rhsode = lcode1(t,y)
global Phi xi h A B C G N
% initialize theta and v
theta = y(1:(N-1));
v = y(N:(2*N-2));
rhsode(1,1) = (A/(h^2))*(theta(2)-2*theta(1)+ Phi) - (B/(2*h))*(v(2)-0);
% for all other internal positions 0<z<d
for i=2:(N-2)
rhsode(i,1) = (A/(h^2))*(theta(i+1)-2*theta(i)+theta(i-1)) - (B/(2*h))*(v(i+1)-v(i-1));
end
% for the positon to the left of the right hand boundary z=d
rhsode(N-1,1) = (A/(h^2))*(Phi-2*theta(N-1)+ theta(N-2)) - (B/(2*h))*(0-v(N-2));
rhsode(N,1) = (G/(h^3))*(-Phi + 3*theta(1) - 3*theta(2) + theta(3)) + (C/(h^2))*(v(2) -2*v(1)+ 0) + (xi/(2*h))*(theta(2)-Phi);
rhsode(N+1,1) = (G/(2*h^3))*(Phi - 2*theta(1) + 2*theta(3)- theta(4)) + (C/(h^2))*(v(3) -2*v(2) + v(1)) + (xi/(2*h))*(theta(3)-theta(1));
% for all other internal positions 0<z<d
for i=(N+2):(2*N-4)
rhsode(i,1) = (G/(2*h^3))*(theta(i-2-(N-1)) - 2*theta(i-1-(N-1)) + 2*theta(i+1-(N-1))- theta(i+2-(N-1))) +(C/(h^2))*(v(i+1-(N-1)) -2*v(i-(N-1)) + v(i-1-(N-1))) + (xi/(2*h))*(theta(i+1-(N-1))-theta(i-1-(N-1)));
end
% for the two positons to the left of the right hand boundary z=d
rhsode(2*N-3,1) = (G/(2*h^3))*(theta(N-4) - 2*theta(N-3) + 2*theta(N-1) - Phi) +(C/(h^2))*(v(N-1) -2*v(N-2) + v(N-3)) + (xi/(2*h))*(theta(N-1)-theta(N-3));
rhsode(2*N-2,1) = (G/(h^3))*(-theta(N-3) + 3*theta(N-2) - 3*theta(N-1) + Phi) +(C/(h^2))*(0 -2*v(N-1) + v(N-2)) + (xi/(2*h))*(Phi-theta(N-2));
end
Torsten
Torsten on 17 Aug 2022
Sorry, but I have no experience in optimizing graphics output.
Maybe you should open a new question.

Sign in to comment.

More Answers (0)

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!