I want to do exponential fitting for power decaying with time
4 views (last 30 days)
Show older comments
Hi there,
I have this matrix (first cloumn is time while the second column is received power), I want to do exponentially fitting, how can I can do it and how can I find time-decaying constant of the exponential.
x=[
65.10 1.0000e+000
65.90 61.0843e-003
70.30 21.3693e-003
];
0 Comments
Accepted Answer
Image Analyst
on 21 Sep 2022
If you have the Statistics and Machine Learning Toolbox you can use fitnlm. See attached full demo. Replace the demo data with your own. However I'll tell you that any fit with only 3 data points will probably be very inaccurate. You should definitely make more measurements.
0 Comments
More Answers (2)
Torsten
on 21 Sep 2022
x=[
65.10 1.0000e+000
65.90 61.0843e-003
70.30 21.3693e-003
];
fun = @(p)exp(-p*(x(:,1)-65.1));
fun1 = @(p)fun(p)-x(:,2);
p = lsqnonlin(fun1,0.1)
format long
fun1(p)
hold on
plot(x(:,1),x(:,2))
plot(x(:,1),fun(p))
hold off
0 Comments
Cris LaPierre
on 21 Sep 2022
The easiest approach is to use the Curve Fitting app inside a live script. This does require having the Curve Fitting Toolbox installed. Once done, you can have the app generate the corresponding code. Here is what that code might look like.
x=[
65.10 1.0000e+000
65.90 61.0843e-003
70.30 21.3693e-003
];
X = x(:,1);
Y = x(:,2);
[xData, yData] = prepareCurveData( X, Y );
% Set up fittype and options.
ft = fittype( 'exp1' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.StartPoint = [1.19913731842403e+35 -1.24044938669103];
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
% Plot fit with data.
figure( 'Name', 'untitled fit 1' );
h = plot( fitresult, xData, yData );
legend( h, 'Y vs. X', 'untitled fit 1', 'Location', 'NorthEast', 'Interpreter', 'none' );
% Label axes
xlabel( 'X', 'Interpreter', 'none' );
ylabel( 'Y', 'Interpreter', 'none' );
grid on
I assume you are intersted in the coefficient b.
fitresult
0 Comments
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!