The (x,y) coordinates of a certain object as a function of time t are given by x(t) = 5t - 10; and y(t) = 25t2 – 120 t + 144, for 0 ≤ t ≤ 4. 1)
7 views (last 30 days)
Show older comments
- determine the time at which the object is the closest to the origin at (0,0);
- determine the minimum distance
solution:
for t=0:0.1:4
x=5*t-10;
y=25*t^2-120*t+144;
dist=sqrt(y^2+x^2);
end
need help determine the time at which the object is the closest to the origin at (0,0); and determine the minimum distance
solution:
0 Comments
Accepted Answer
Torsten
on 28 Sep 2022
Edited: Torsten
on 28 Sep 2022
syms t
x = 5*t-10;
y = 25*t^2-120*t+144;
distance_squared = x^2+y^2;
d_distance_squared_dt = diff(distance_squared,t);
time_of_minimum_distance = vpa(solve(d_distance_squared_dt==0,'MaxDegree',3));
time_of_minimum_distance = time_of_minimum_distance(abs(imag(time_of_minimum_distance))<1e-3)
minimum_distance = sqrt(subs(distance_squared,time_of_minimum_distance))
tnum = 0:0.001:4;
xnum = @(t)5*t-10;
ynum = @(t)25*t.^2-120*t+144;
hold on
plot(xnum(tnum),ynum(tnum))
plot(xnum(double(time_of_minimum_distance)),ynum(double(time_of_minimum_distance)),'o')
hold off
More Answers (0)
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!