Error: Not enough input arguments
2 views (last 30 days)
Show older comments
Hello,
I am using the ode45 function to solve three second order equations (theta_double dot 1, theta_double dot 2 and theta_double dot n) to produce torque deflection characteristics. I have typed this code following a few tutorials on youtube.
Does anyone know why I am getting an error saying 'Not enough input arguments'?
*I am quite new to MATLAB*
Code:
syms J1 J2 Jn c1 c2 cn k1 k2 kn knl q w x(t) y(t) z(t) T Y
% let ddtheta(1)=x, ddtheta(2)=y, ddtheta(n)=z, dtheta_out=q. theta_out=w
Eq1 = diff(x,2) == (-c1*((diff(x)-q) - k1*(x-w) ...
+ c2*(diff(y)-diff(x)) + k2*(y-x) + cn*(diff(z)-diff(x))...
+ kn*(z-x) + knl*(z-x)^5))/J1;
Eq2 = diff(y,2) == ((-c2*(diff(y)-diff(x)))-(k2*(y-x)))/J2;
Eq3 = diff(z,2) == ((-cn*(diff(z)-diff(x)))-(kn*(z-x))-(knl*(z-x)^5))/Jn;
[VF,Sbs] = odeToVectorField(Eq1,Eq2,Eq3);
coupled_vanderpol = matlabFunction(VF, 'Vars',{J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y});
%Parameters
J1 = 2.08e-4;
J2 = 2.931e-3;
Jn = 4.0085e-4;
c1 = 0.15;
c2 = 0.2;
cn = 0.015;
k1 = 270;
k2 = 8500;
kn = 10.89;
knl = 38870;
%Velocity input
tspan = [0,100];
thetadot0 = 800; % mean motor speed (rpm)
theta1dot = thetadot0*2/100;
theta2dot = thetadot0*0.5/100;
f_mech = thetadot0/(2*pi);
q = thetadot0 + theta1dot*cos(36*2*pi*f_mech*tspan) ...
+ theta2dot*cos(2*36*2*pi*f_mech*tspan);
C=0;
w = thetadot0*tspan + (theta1dot*sin(72*pi*f_mech*tspan))/(72*pi*f_mech) ...
+ (theta2dot*sin(144*pi*f_mech*tspan))/(144*pi*f_mech) + C;
%Initial Conditions
t0 = [thetadot0,0,0,0,thetadot0,0];
%Plot
[t,v_z] = ode45(@(T,Y)coupled_vanderpol({J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y}),tspan,t0);
figure
plot(t, v_z)
grid
Error:
Not enough input arguments.
Error in symengine>@(J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y)[Y(2);-(c2.*(Y(2)-Y(4))+k2.*(Y(1)-Y(3)))./J2;Y(4);(c1.*(q+knl.*(Y(3)-Y(5)).^5-Y(4)-k1.*(w-Y(3))-c2.*(Y(2)-Y(4))+cn.*(Y(4)-Y(6))-k2.*(Y(1)-Y(3))+kn.*(Y(3)-Y(5))))./J1;Y(6);(knl.*(Y(3)-Y(5)).^5+cn.*(Y(4)-Y(6))+kn.*(Y(3)-Y(5)))./Jn]
Error in trial>@(T,Y)coupled_vanderpol({J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y}) (line 41)
[t,v_z] = ode45(@(T,Y)coupled_vanderpol({J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y}),tspan,t0);
Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 107)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
Error in trial (line 41)
[t,v_z] = ode45(@(T,Y)coupled_vanderpol({J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y}),tspan,t0);
Thank you!!
0 Comments
Answers (1)
Bora Eryilmaz
on 6 Jan 2023
Edited: Bora Eryilmaz
on 6 Jan 2023
There are probably other array concatenation issues in your equation definitions, but regarding your current issue, remove the curly braces inside the coupled_vanderpol(...) call:
% Not this
%[t,v_z] = ode45(@(T,Y)coupled_vanderpol({J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y}),tspan,t0);
% But this
%[t,v_z] = ode45(@(T,Y)coupled_vanderpol(J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y),tspan,t0);
See the updated example below:
syms J1 J2 Jn c1 c2 cn k1 k2 kn knl q w x(t) y(t) z(t) T Y
% let ddtheta(1)=x, ddtheta(2)=y, ddtheta(n)=z, dtheta_out=q. theta_out=w
Eq1 = diff(x,2) == (-c1*((diff(x)-q) - k1*(x-w) ...
+ c2*(diff(y)-diff(x)) + k2*(y-x) + cn*(diff(z)-diff(x))...
+ kn*(z-x) + knl*(z-x)^5))/J1;
Eq2 = diff(y,2) == ((-c2*(diff(y)-diff(x)))-(k2*(y-x)))/J2;
Eq3 = diff(z,2) == ((-cn*(diff(z)-diff(x)))-(kn*(z-x))-(knl*(z-x)^5))/Jn;
[VF,Sbs] = odeToVectorField(Eq1,Eq2,Eq3);
coupled_vanderpol = matlabFunction(VF, 'Vars',{J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y});
%Parameters
J1 = 2.08e-4;
J2 = 2.931e-3;
Jn = 4.0085e-4;
c1 = 0.15;
c2 = 0.2;
cn = 0.015;
k1 = 270;
k2 = 8500;
kn = 10.89;
knl = 38870;
% Similar to what ode45 is doing
T = 0;
Y = 1:6;
% Not this:
% coupled_vanderpol({J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y})
% But this
coupled_vanderpol(J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y)
ode45 is probably calling the function with a Y vector that has a different size than 6, which results in array concatenation issues like this:
Y = 1:5;
coupled_vanderpol(J1,J2,Jn,c1,c2,cn,k1,k2,kn,knl,q,w,T,Y)
I believe ode45 can call the function for Y values corresponding to multiple time points, in which case your code needs to be able to handle a matrix of Y values, which would have 6 columns and as many rows as the time points.
4 Comments
Bora Eryilmaz
on 6 Jan 2023
You will have to figure out how to structure the equations' output yourself.
For ode45, if you have three equations and three variables, you need to return a Y matrix with 3 columns and as many rows as in T that was passed in by ode45.
You also don't need to use symbolic math here. Just create a regular MATLAB function to encode your differential equations. Also, please read the examples more carefully: https://www.mathworks.com/help/matlab/ref/ode45.html#bu00_4l_sep_shared-odefun
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!