To find exponent in power law equation of the form y = ax^m + b
8 views (last 30 days)
Show older comments
I have X and Y points for a curve to be of the form Y = ax^m + b.
I want to find the exponent m, lets just say that m could be inbetween 1.2 - 2.5.
How can I find exact value for m?
0 Comments
Accepted Answer
Matt J
on 19 Jan 2023
Edited: Matt J
on 19 Jan 2023
fminspleas downloadable from
is especially appropriate for power law fits.
a = 0.55;
m = 1.3;
b = -0.78;
% dummy data
x = (1:25)';
y = a*x.^m + b + randn(size(x));
m=fminspleas( {@(m,x)x.^m , 1}, 2,x,y, 1.2,2.5 )
2 Comments
Matt J
on 19 Jan 2023
Probably similar, but with 3 unknowns fminsearch is not guaranteed to converge, so no rigorous predictions are possible.
More Answers (2)
Mathieu NOE
on 19 Jan 2023
hello
try this
may need some refinement for the initial guess for the parameters depending of your data
a = 0.55;
m = 1.3;
b = -0.78;
% dummy data
x = (1:25);
y = a*x.^m + b + randn(size(x));
% equation model y = a*x^m + b
f = @(a,m,b,x) (a*x.^m + b);
obj_fun = @(params) norm(f(params(1), params(2), params(3),x)-y);
% IC guessed
sol = fminsearch(obj_fun, rand(3,1));
a_sol = sol(1)
m_sol = sol(2)
b_sol = sol(3)
y_fit = f(a_sol, m_sol, b_sol, x);
Rsquared = my_Rsquared_coeff(y,y_fit); % correlation coefficient
figure(1)
plot(x,y,'rd',x,y_fit,'b-');
title(['Power Fit / R² = ' num2str(Rsquared) ], 'FontSize', 15)
ylabel('Intensity (arb. unit)', 'FontSize', 14)
xlabel('x(nm)', 'FontSize', 14)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Rsquared = my_Rsquared_coeff(data,data_fit)
% R² correlation coefficient computation
% The total sum of squares
sum_of_squares = sum((data-mean(data)).^2);
% The sum of squares of residuals, also called the residual sum of squares:
sum_of_squares_of_residuals = sum((data-data_fit).^2);
% definition of the coefficient of correlation is
Rsquared = 1 - sum_of_squares_of_residuals/sum_of_squares;
end
0 Comments
Matt J
on 19 Jan 2023
If you have the Curve Fitting Toolbox,
a = 0.55;
m = 1.3;
b = -0.78;
% dummy data
x = (1:25)';
y = a*x.^m + b + randn(size(x));
fobj=fit(x,y,'power2','Lower',[-inf,1.2,-inf],'Upper',[+inf,2.5,+inf])
plot(fobj,x,y)
0 Comments
See Also
Categories
Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!