ilaplace and laplace answer
2 views (last 30 days)
Show older comments
justin nabbs
on 2 Apr 2015
Edited: Walter Roberson
on 25 Nov 2024
I am just learning how to use the Laplace/Inverse functions in Matlab and was hoping to get some understanding of the final answer below. When working out 1st and second order functions I can ascertain the answer as it does not contain symsum or rootof, or r4 etc. In any case I am unsure of what symsum and Rootof translates to for a final answer? Thanks
>> syms t s
>> F=5*(s+3)/((s^5+4*s^4-3*s^2+7*s+10))
F =
(5*s + 15)/(s^5 + 4*s^4 - 3*s^2 + 7*s + 10)
>> pretty(ans)
5 s + 15
---------------------------
5 4 2
s + 4 s - 3 s + 7 s + 10
>> ilaplace(F)
ans =
15*symsum(exp(r4*t)/(5*r4^4 + 16*r4^3 - 6*r4 + 7), r4 in RootOf(s4^5 + 4*s4^4 - 3*s4^2 + 7*s4 + 10, s4)) + 5*symsum((r4*exp(r4*t))/(5*r4^4 + 16*r4^3 - 6*r4 + 7), r4 in RootOf(s4^5 + 4*s4^4 - 3*s4^2 + 7*s4 + 10, s4))
>>
0 Comments
Accepted Answer
Star Strider
on 2 Apr 2015
Edited: Star Strider
on 2 Apr 2015
If you have R2015a, you can invert it the old-fashion way with partfrac. Do a pratial fraction expansion and then invert it:
syms t s
Fsv=5*(s+3)/((s^5+4*s^4-3*s^2+7*s+10));
Fpf = partfrac(Fsv, s, 'FactorMode','real');
Ft = ilaplace(Fpf, s, t);
Ftv = vpa(Ft,5)
producing:
Ftv =
- exp(t*(0.97907 + 0.92185i))*(0.29419 + 0.30855i) - exp(t*(0.97907 - 0.92185i))*(0.29419 - 0.30855i) + exp(t*(- 1.1315 + 0.46501i))*(0.30547 - 0.6614i) + exp(t*(- 1.1315 - 0.46501i))*(0.30547 + 0.6614i) - 0.022557*exp(-3.6952*t)
I used vpa to make it easy to read. MATLAB maintains full precision.
Added —
This can be simplified further with rewrite and simplify:
Ftt = rewrite(Ftv, 'sincos');
Ftt = simplify(Ftt, 'Steps',10, 'IgnoreAnalyticConstraints',1);
Ftt = vpa(Ftt,5)
producing a much neater result:
Ftt =
1.3228*exp(-1.1315*t)*sin(0.46501*t) - 0.022557*exp(-3.6952*t) + 0.61094*exp(-1.1315*t)*cos(0.46501*t)
1 Comment
Duc Huy Le
on 16 Jun 2015
Edited: Walter Roberson
on 25 Nov 2024
Thanks, i have used tutorial but but results return a virtual:
syms t s
M=(40000/s+240)*(exp(-0.0936*s)-exp(-1.008*s));
N=(32000/s+240)*(exp(-0.2808*s)-exp(-0.288*s));
Q1=2000*s^2+2400*s+360000;
Q2=-120*s+34000;
Q3=120*s-34000;
Q4=2100*s^2+4062*s+604100;
F=((M+N)*Q4+(1.35*N-1.25*M)*Q2)/(Q1*Q4+Q2*Q3);
Fpf = partfrac(F, s, 'FactorMode','real');
Ft = ilaplace(Fpf, s, t);
Ftv = vpa(Ft,5);
Ftt = rewrite(Ftv, 'sincos');
Ftt = simplify(Ftt, 'Steps',10, 'IgnoreAnalyticConstraints',1);
Ftt = vpa(Ftt,5)
Ftt =
0.10385*heaviside(1.0*t - 0.0936) - 0.096154*heaviside(1.0*t - 0.288) + 0.096154*heaviside(1.0*t - 0.2808) - 0.10385*heaviside(1.0*t - 1.008) + sin(t*(17.006 - 0.95036i))*heaviside(1.0*t - 0.288)*(0.006097 + 0.0015722i) - sin(t*(17.006 - 0.95036i))*heaviside(1.0*t - 0.2808)*(0.0062008 + 0.00081025i) - sin(t*(17.006 - 0.95036i))*heaviside(1.0*t - 1.008)*(0.018259 - 0.000076573i) - cos(t*(13.31 - 0.61679i))*heaviside(1.0*t - 0.0936)*(0.01834 + 0.044105i) - sin(t*(13.31 - 0.61679i))*heaviside(1.0*t - 0.0936)*(0.044105 - 0.01834i) - cos(t*(13.31 - 0.61679i))*heaviside(1.0*t - 0.288)*(0.050133 + 0.03844i) + cos(t*(13.31 - 0.61679i))*heaviside(1.0*t - 0.2808)*(0.053344 + 0.033319i) + cos(t*(13.31 - 0.61679i))*heaviside(1.0*t - 1.008)*(0.059611 + 0.059122i) - sin(t*(13.31 - 0.61679i))*heaviside(1.0*t - 0.288)*(0.03844 - 0.050133i) + sin(t*(13.31 - 0.61679i))*heaviside(1.0*t - 0.2808)*(0.033319 - 0.053344i) + sin(t*(13.31 - 0.61679i))*heaviside(1.0*t - 1.008)*(0.059122 - 0.059611i) - heaviside(1.0*t - 0.0936)*cos(t*(13.31 + 0.61679i))*(0.01834 - 0.044105i) + heaviside(1.0*t - 0.0936)*cos(t*(17.006 + 0.95036i))*(0.001173 + 0.0075669i) - sin(t*(13.31 + 0.61679i))*heaviside(1.0*t - 0.0936)*(0.044105 + 0.01834i) + cos(t*(17.006 - 0.95036i))*heaviside(1.0*t - 0.0936)*(0.001173 - 0.0075669i) - sin(t*(17.006 + 0.95036i))*heaviside(1.0*t - 0.0936)*(0.0075669 - 0.001173i) - heaviside(1.0*t - 0.288)*cos(t*(13.31 + 0.61679i))*(0.050133 - 0.03844i) + heaviside(1.0*t - 0.2808)*cos(t*(13.31 + 0.61679i))*(0.053344 - 0.033319i) - heaviside(1.0*t - 0.288)*cos(t*(17.006 + 0.95036i))*(0.0015722 + 0.006097i) + heaviside(1.0*t - 0.2808)*cos(t*(17.006 + 0.95036i))*(0.00081025 + 0.0062008i) + heaviside(1.0*t - 1.008)*cos(t*(13.31 + 0.61679i))*(0.059611 - 0.059122i) - sin(t*(17.006 - 0.95036i))*heaviside(1.0*t - 0.0936)*(0.0075669 + 0.001173i) - heaviside(1.0*t - 1.008)*cos(t*(17.006 + 0.95036i))*(0.000076573 - 0.018259i) - sin(t*(13.31 + 0.61679i))*heaviside(1.0*t - 0.288)*(0.03844 + 0.050133i) - cos(t*(17.006 - 0.95036i))*heaviside(1.0*t - 0.288)*(0.0015722 - 0.006097i) + sin(t*(13.31 + 0.61679i))*heaviside(1.0*t - 0.2808)*(0.033319 + 0.053344i) + cos(t*(17.006 - 0.95036i))*heaviside(1.0*t - 0.2808)*(0.00081025 - 0.0062008i) + sin(t*(17.006 + 0.95036i))*heaviside(1.0*t - 0.288)*(0.006097 - 0.0015722i) - sin(t*(17.006 + 0.95036i))*heaviside(1.0*t - 0.2808)*(0.0062008 - 0.00081025i) + sin(t*(13.31 + 0.61679i))*heaviside(1.0*t - 1.008)*(0.059122 + 0.059611i) - cos(t*(17.006 - 0.95036i))*heaviside(1.0*t - 1.008)*(0.000076573 + 0.018259i) - sin(t*(17.006 + 0.95036i))*heaviside(1.0*t - 1.008)*(0.018259 + 0.000076573i)
I want to draw a graph of the function returns the final. Please help me. Thanks!
More Answers (0)
See Also
Categories
Find more on Special Values in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!