How can i solve initial value ordinary differential equation using matlab ??
    2 views (last 30 days)
  
       Show older comments
    
    Surendra Ratnu
 on 21 Aug 2023
  
    
    
    
    
    Commented: Surendra Ratnu
 on 21 Aug 2023
            I want to solve four differtial equation and these are shown in picture. Here u,s,p,r are dependent variable and t is the independent variable. W and a are the constant (values are 154 and 44.5 degree). t is the independent variable and varies from 0 to 180 degree. initial condition are u0 = 0.10, so = 0.2025, p0 = 1.4706, r0 = 2.2449. 
5 Comments
  Bruno Luong
      
      
 on 21 Aug 2023
				Some obvious mixe and match unit : sin and cos take argument in radian not in degree
Accepted Answer
  Bruno Luong
      
      
 on 21 Aug 2023
        
      Edited: Bruno Luong
      
      
 on 21 Aug 2023
  
      I change integration variables to v=u*s and w=u^2*s;
This should work (you need to sort out the discrepency of unit, speccially for t)
W = 154;
a = deg2rad(44.5);
u0 = 0.10;
s0 = 0.2025;
p0 = 1.4706; 
r0 = 2.2449;
v0 = u0*s0;
w0 = u0^2*s0;
y0 = [v0;w0;p0;r0];
sol = ode45(@(t,y) odefun(t,y,a,W),[0 pi],y0);
t = sol.x;
y = sol.y;
v = y(1,:);
w = y(2,:);
p = y(3,:);
r = y(4,:);
u = w./v;
s = v./u;
tdeg = rad2deg(t)
figure
subplot(2,2,1); plot(tdeg, u); xlabel('tdeg'); ylabel('u')
subplot(2,2,2); plot(tdeg, s); xlabel('tdeg'); ylabel('s')
subplot(2,2,3); plot(tdeg, p); xlabel('tdeg'); ylabel('p')
subplot(2,2,4); plot(tdeg, r); xlabel('tdeg'); ylabel('r')
function dydt = odefun(t, y, a, W)
%v = y(1);  % u*s
w = y(2);   % u^2*s
p = y(3);
r = y(4);
sina = sin(a);
cosacost = cos(a).*cos(t);
c =  sina^3./(4*(1+cosacost).^2);
dvdt = c;
dwdt = c.*cos(p);
dpdt = (2*r/W - c*sin(p).^2) ./ (w.*sin(p)) - 1;
drdt = t ./ tan(p);
dydt = [dvdt; dwdt; dpdt; drdt];
end
More Answers (0)
See Also
Categories
				Find more on Ordinary Differential Equations in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!









