Solving First order ODEs simultaneously

3 views (last 30 days)
Hello, needed help figuring out why I cannot obtain a solution. I'm sure this is a solvable solution however I keep getting a warning saying no solution is found. Is there any mistake I'm making in the code?
Everything is a constant except E, Sr(t) & Er(t).
% Rigorous Solution Case #1
syms Sr(t) Er(t) E;
E = Ea - Er(t);
Unrecognized function or variable 'Ea'.
ode2a = diff(Sr(t),t) == -(k1*(Ea - Er(t))*Sr(t)) + krev1*Er(t);
ode3a = diff(Er,t) == (k1*(Ea - Er(t))*Sr(t)) - (krev1+k2)*Er(t);
odes = [ode2a; ode3a];
cond1 = Sr(0) == Sa;
cond2 = Er(0) == 0;
conds = [cond1; cond2];
[SrSol(t),ErSol(t)] = dsolve(odes,conds)
  4 Comments
Walter Roberson
Walter Roberson on 28 Sep 2023
Ea = 123; %just to have SOME value
k1 = 42; %just to have SOME value
k2 = 13; %just to have SOME value
krev1 = 48; %just to have SOME value
Sa = 5; %just to have SOME value
% Rigorous Solution Case #1
syms Sr(t) Er(t) E;
E = Ea - Er(t);
ode2a = diff(Sr(t),t) == -(k1*(Ea - Er(t))*Sr(t)) + krev1*Er(t);
ode3a = diff(Er,t) == (k1*(Ea - Er(t))*Sr(t)) - (krev1+k2)*Er(t);
eqns = [ode2a; ode3a];
cond1 = Sr(0) == Sa;
cond2 = Er(0) == 0;
conds = [cond1; cond2];
[eqs,vars] = reduceDifferentialOrder(eqns, [Sr(t), Er(t)])
eqs = 
vars = 
[M,F] = massMatrixForm(eqs,vars)
M = 
F = 
f = M\F
f = 
odefun = odeFunction(f,vars)
odefun = function_handle with value:
@(t,in2)[in2(2,:).*4.8e+1-in2(1,:).*5.166e+3+in2(2,:).*in2(1,:).*4.2e+1;in2(2,:).*-6.1e+1+in2(1,:).*5.166e+3-in2(2,:).*in2(1,:).*4.2e+1]
InitConditions = double(rhs(conds)) %watch out for order though!
InitConditions = 2×1
5 0
[T, Y] = ode45(odefun, [0 0.01], InitConditions);
subplot(2,1,1); plot(T, Y(:,1)); title(string(vars(1)))
subplot(2,1,2); plot(T, Y(:,2)); title(string(vars(2)))
%that almost looks like the initial conditions are reversed.
%what happens if we try reversing the conditions?
[Tr, Yr] = ode45(odefun, [0 0.01], flipud(InitConditions));
figure
subplot(2,1,1); plot(Tr, Yr(:,1)); title(string(vars(1)))
subplot(2,1,2); plot(Tr, Yr(:,2)); title(string(vars(2)))

Sign in to comment.

Accepted Answer

Torsten
Torsten on 28 Sep 2023
Moved: Torsten on 28 Sep 2023
I'm quite sure there is no analytical solution for your system of ODEs since the right-hand sides are nonlinear in the unknown functions (term Er(t)*Sr(t)).
  7 Comments
Valerie
Valerie on 29 Sep 2023
@Sam Chak I rage quit mathematica this week and is how I eneded up on MATLAB lol but thank you!

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!