Obtain natural frequencies of a structural model.

2 views (last 30 days)
I have created a mechanical model:
modelTwoDomain = createpde("structural", "transient-planestress");
structuralProperties(modelTwoDomain, 'YoungsModulus', E, 'PoissonsRatio', nu, 'MassDensity', mass);
structuralIC(modelTwoDomain, "Displacement", [0; 0], "Velocity", [0; 0]);
and someboundary conditions.
My question is if I use the command res = solve(modelTwoDomain, ti), where ti is a time vector, the resultant object res, does not contain natural frequencies. How can I obtain or check the natural frequencies of the system?
Thanks very much.

Accepted Answer

Sam Chak
Sam Chak on 9 Oct 2023
Since the natural frequencies are related to the eigenvalues of the structural system, I believe you can use the solvepdeeig() command to solve the PDE for eigenvalues. I followed the example in the link and successfully found the eigenvalue of the system.
model = createpde(3);
importGeometry(model,"BracketTwoHoles.stl");
pdegplot(model,"FaceLabels","on","FaceAlpha",0.4)
applyBoundaryCondition(model,"dirichlet","Face",1,"u",[0;0;0]);
E = 200e9; % elastic modulus of steel in Pascals
nu = 0.3; % Poisson's ratio
specifyCoefficients(model,"m",0,...
"d",1,...
"c",elasticityC3D(E,nu),...
"a",0,...
"f",[0;0;0]);
evr = [-Inf,1e7];
generateMesh(model);
results = solvepdeeig(model,evr);
% Checking the Eigenvalues
lambda = results.Eigenvalues
lambda = 3×1
1.0e+06 * 1.2460 2.2761 6.2349
V = results.Eigenvectors;
subplot(3,2,1)
pdeplot3D(model,"ColorMapData",V(:,1,1))
title("x Deflection, Mode 1")
subplot(3,2,3)
pdeplot3D(model,"ColorMapData",V(:,2,1))
title("y Deflection, Mode 1")
subplot(3,2,5)
pdeplot3D(model,"ColorMapData",V(:,3,1))
title("z Deflection, Mode 1")
subplot(3,2,2)
pdeplot3D(model,"ColorMapData",V(:,1,3))
title("x Deflection, Mode 3")
subplot(3,2,4)
pdeplot3D(model,"ColorMapData",V(:,2,3))
title("y Deflection, Mode 3")
subplot(3,2,6)
pdeplot3D(model,"ColorMapData",V(:,3,3))
title("z Deflection, Mode 3")

More Answers (0)

Products


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!