Clear Filters
Clear Filters

why does the figure doesnt show the two vectors?

2 views (last 30 days)
Hi! i am working on a project using the while loop (similar to my question regarding for loop) the figure doesnt show the plot as desired. what is wrong regarding the code?
code below:
%Links length
L1=5; L2=1; L3=5; L4=7; AP=5;
% ternary link angle (degree)
delta=50;
th2= 0:1.2:360;
range_th2=300;
RP=zeros(1,range_th2);
RA=zeros(1,range_th2);
i=1;
while i<=301
% the loop variables
R1=L1;
R2=L2*(cos(th2(i))+sin(th2(i))*1i);
Z=R1-R2;
Zconj=conj(Z);
% Quadratic equation parameters
a=L4.*Zconj;
b=Z.*Zconj+L4.^2-L3.^2;
c=L4*Z;
T=roots([a b c]);
T_pos=T(2);
%T_pos=(-b+sqrt(b.^2-4.*c.*a))/(2.*a);
S=(L4*T_pos+Z)/L4;
% solution
th3(i)=rad2deg(angle(T_pos));
th4(i)=rad2deg(angle(S));
R3=L3*(cos(th3(i))+sin(th3(i))*1i);
R4=L4*(cos(th4(i))+sin(th4(i))*1i);
thAP=th3(i)-delta;
RAP=AP*(cos(thAP)+sin(thAP)*1i);
%position of A and P
RA(i)=R2;
RP(i)=R2+RAP;
i=i+1;
end
A_real=real(RA)
A_real = 1×301
1.0000 0.3624 -0.7374 -0.8968 0.0875 0.9602 0.6084 -0.5193 -0.9847 -0.1943 0.8439 0.8059 -0.2598 -0.9942 -0.4607 0.6603 0.9392 0.0204 -0.9245 -0.6903 0.4242 0.9977 0.2989 -0.7811 -0.8650 0.1543 0.9768 0.5536 -0.5756 -0.9707
A_imag=imag(RA)
A_imag = 1×301
0 0.9320 0.6755 -0.4425 -0.9962 -0.2794 0.7937 0.8546 -0.1743 -0.9809 -0.5366 0.5921 0.9657 0.1078 -0.8876 -0.7510 0.3433 0.9998 0.3813 -0.7235 -0.9056 0.0672 0.9543 0.6244 -0.5018 -0.9880 -0.2143 0.8328 0.8178 -0.2401
plot(A_real,A_imag)
hold on
P_real=real(RP)
P_real = 1×301
-3.8675 2.9171 -5.5663 -1.7785 -4.8323 1.6248 3.3844 1.8513 -1.5249 -2.4793 -0.2238 0.0130 4.5774 -2.5654 4.4553 5.4299 0.2248 2.6124 3.0542 -2.5154 -3.9619 -3.8939 -3.5367 -5.6547 -1.6590 -0.4626 5.1432 5.1124 -0.0507 1.6366
P_imag=imag(RP)
P_imag = 1×301
1.1434 -3.3660 1.9724 4.4791 -0.1042 4.6762 -3.3649 5.2569 -5.1451 3.4664 -5.4213 5.5288 -0.2998 4.8545 -1.8001 0.7494 -4.6054 -3.2759 -2.6469 -5.3785 1.4949 1.1027 -2.2532 -0.4928 4.4348 3.9738 2.5499 -1.2209 5.7901 -4.5064
plot(P_real,P_imag)

Answers (2)

Les Beckham
Les Beckham on 2 Nov 2023
Edited: Les Beckham on 2 Nov 2023
It looks like it is working to me (see below). What are you expecting and how is that different from the results you are seeing?
%Links length
L1=5; L2=1; L3=5; L4=7; AP=5;
% ternary link angle (degree)
delta=50;
th2= 0:1.2:360;
range_th2=300;
RP=zeros(1,range_th2);
RA=zeros(1,range_th2);
i=1;
while i<=301
% the loop variables
R1=L1;
R2=L2*(cos(th2(i))+sin(th2(i))*1i);
Z=R1-R2;
Zconj=conj(Z);
% Quadratic equation parameters
a=L4.*Zconj;
b=Z.*Zconj+L4.^2-L3.^2;
c=L4*Z;
T=roots([a b c]);
T_pos=T(2);
%T_pos=(-b+sqrt(b.^2-4.*c.*a))/(2.*a);
S=(L4*T_pos+Z)/L4;
% solution
th3(i)=rad2deg(angle(T_pos));
th4(i)=rad2deg(angle(S));
R3=L3*(cos(th3(i))+sin(th3(i))*1i);
R4=L4*(cos(th4(i))+sin(th4(i))*1i);
thAP=th3(i)-delta;
RAP=AP*(cos(thAP)+sin(thAP)*1i);
%position of A and P
RA(i)=R2;
RP(i)=R2+RAP;
i=i+1;
end
A_real=real(RA);
A_imag=imag(RA);
plot(A_real,A_imag);
hold on
P_real=real(RP);
P_imag=imag(RP);
plot(P_real,P_imag)
axis equal
  2 Comments
shamma aljaberi
shamma aljaberi on 2 Nov 2023
Im expecting a circular shape for RA and more like an Ellipse shape for RP
Les Beckham
Les Beckham on 2 Nov 2023
I edited my answer to add "axis equal" so the x and y scales are equal. They are both pretty circular in shape. Have you double checked the equations?

Sign in to comment.


dpb
dpb on 2 Nov 2023
Edited: dpb on 2 Nov 2023
%Links length
L1=5; L2=1; L3=5; L4=7; AP=5;
% ternary link angle (degree)
delta=50;
th2= 0:1.2:360;
range_th2=300;
RP=zeros(1,range_th2);
RA=zeros(1,range_th2);
i=1;
while i<=301
% the loop variables
R1=L1;
R2=L2*(cos(th2(i))+sin(th2(i))*1i);
Z=R1-R2;
Zconj=conj(Z);
% Quadratic equation parameters
a=L4.*Zconj;
b=Z.*Zconj+L4.^2-L3.^2;
c=L4*Z;
T=roots([a b c]);
T_pos=T(2);
%T_pos=(-b+sqrt(b.^2-4.*c.*a))/(2.*a);
S=(L4*T_pos+Z)/L4;
% solution
th3(i)=rad2deg(angle(T_pos));
th4(i)=rad2deg(angle(S));
R3=L3*(cos(th3(i))+sin(th3(i))*1i);
R4=L4*(cos(th4(i))+sin(th4(i))*1i);
thAP=th3(i)-delta;
RAP=AP*(cos(thAP)+sin(thAP)*1i);
%position of A and P
RA(i)=R2;
RP(i)=R2+RAP;
i=i+1;
end
A_real=real(RA);
A_imag=imag(RA);
plot(A_real,A_imag);
hold on
P_real=real(RP);
P_imag=imag(RP);
plot(P_real,P_imag);
axis equal
legend('A','P')
figure, subplot(2,1,1) % look versus order instead
plot(A_real), hold on, plot(A_imag)
xlim([1 100])
legend('A_R','A_I')
subplot(2,1,2) % look versus order instead
plot(P_real), hold on, plot(P_imag)
legend('P_R','P_I')
xlim([1 100])
What we observe is that the "A" traces are pretty clean sinusoids with just a phase difference; hence the real vs imaginary parts follow a decent trace as shown on the first.
On the other hand, the "P" traces are much more random appearing; movements aren't smooth from one observation to the next; hence the two plotted against each other reflect that...
What you were expecting is unknown to us...we don't know the problem statement.
  4 Comments
Voss
Voss on 2 Nov 2023
Fixing the degree/radian units issue, based on @dpb's observation, produces a more interesting plot. Maybe that's closer to what's intended, @shamma aljaberi?
%Links length
L1=5; L2=1; L3=5; L4=7; AP=5;
% ternary link angle (degree)
delta=50;
th2= 0:1.2:360;
range_th2=300;
RP=zeros(1,range_th2);
RA=zeros(1,range_th2);
i=1;
while i<=301
% the loop variables
R1=L1;
R2=L2*(cos(th2(i))+sin(th2(i))*1i);
Z=R1-R2;
Zconj=conj(Z);
% Quadratic equation parameters
a=L4.*Zconj;
b=Z.*Zconj+L4.^2-L3.^2;
c=L4*Z;
T=roots([a b c]);
T_pos=T(2);
%T_pos=(-b+sqrt(b.^2-4.*c.*a))/(2.*a);
S=(L4*T_pos+Z)/L4;
% solution
th3(i)=rad2deg(angle(T_pos));
th4(i)=rad2deg(angle(S));
R3=L3*(cosd(th3(i))+sind(th3(i))*1i);
R4=L4*(cosd(th4(i))+sind(th4(i))*1i);
thAP=th3(i)-delta;
RAP=AP*(cosd(thAP)+sind(thAP)*1i);
%position of A and P
RA(i)=R2;
RP(i)=R2+RAP;
i=i+1;
end
A_real=real(RA);
A_imag=imag(RA);
plot(A_real,A_imag)
hold on
P_real=real(RP);
P_imag=imag(RP);
plot(P_real,P_imag)
axis equal
legend('A','P')
figure, subplot(2,1,1) % look versus order instead
plot(A_real), hold on, plot(A_imag)
xlim([1 100])
legend('A_R','A_I')
subplot(2,1,2) % look versus order instead
plot(P_real), hold on, plot(P_imag)
legend('P_R','P_I')
xlim([1 100])
dpb
dpb on 2 Nov 2023
@Voss -- thanks, I got interrupted before I got a chance to look more to see if that was the only place -- maybe the alternative fix would be to simply remove the calls to rad2deg() unless the angles are being displayed in those units elsewhere.

Sign in to comment.

Categories

Find more on 2-D and 3-D Plots in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!