I'm having trouble solving a system of nonlinear equations with the fmincon function.
3 views (last 30 days)
Show older comments
I want to solve a system of equations containing two non-linear equations, one of which is Psh_newhv == Pse_newhv,the other is Qs_newhv==0, but solving it with the fmincon function doesn't achieve the first constraint, how can I solve this problem?
% Given constants
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
rho = 0:2*pi/72:2*pi;
V_se = 0.2*V_r;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Initial guess
x0 = [0 0];
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-6);
% Constraints
lb = [];
ub = [];
% Solve for each rho
for m = 1:73
% Define the nonlinear constraint function
fun_newhv = @(x_newhv) myfun_newhv(x_newhv, rho(m));
% Use fmincon to solve the problem
[x_newhv, fval_newhv, exitflag_newhv(m), output_newhv] = fmincon(@(x_newhv) 0, x0, [], [], [], [], lb, ub, fun_newhv, options);
% Extract solutions
gamma_newhv(m) = x_newhv(1);
I_sh_newhv(m) = x_newhv(2);
I_r_newhv(m)=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho(m)))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho(m)))*exp(j*-pi/3);
Pr_newhv(m)=real(V_r*exp(j*theta_r)*conj( I_r_newhv(m)));
Qr_newhv(m)=imag(V_r*exp(j*theta_r)*conj( I_r_newhv(m)));
I_s_newhv(m)=0.5*I_sh_newhv(m)*exp(j*gamma_newhv(m))*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv(m)*exp(j*-pi/6);
Ps_newhv(m)=real(V_s*conj(I_s_newhv(m)));
Qs_newhv(m)=imag(V_s*conj(I_s_newhv(m)));
Psh_newhv(m)=real(V_tap_newhv*conj(I_sh_newhv(m)*exp(j*gamma_newhv(m))));
Qsh_newhv(m)=imag(V_tap_newhv*conj(I_sh_newhv(m)*exp(j*gamma_newhv(m))));
Ssh_newhv(m) = sqrt(Psh_newhv(m)^2 + Qsh_newhv(m)^2);
Pse_newhv(m)=real(V_se_newhv*exp(j*rho(m))*conj(I_sh_newhv(m)));
Qse_newhv(m)=imag(V_se_newhv*exp(j*rho(m))*conj(I_sh_newhv(m)));
Sse_newhv(m) = sqrt(Pse_newhv(m)^2 + Qse_newhv(m)^2);
end
polarplot( (Psh_newhv - Pse_newhv)/Srate,LineWidth=2)
hold on
polarplot( Qs_newhv/Srate,LineWidth=2)
% Nonlinear constraint function
function [c, ceq] = myfun_newhv(x_newhv, rho)
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Extract variables
gamma_newhv = x_newhv(1);
I_sh_newhv = x_newhv(2);
% Compute intermediate quantities
I_r_newhv=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
I_s_newhv=0.5*I_sh_newhv*exp(j*gamma_newhv)*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv*exp(j*-pi/6);
Qs_newhv=imag(V_s*conj(I_s_newhv));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho))*exp(j*-pi/3);
Psh_newhv=real(V_tap_newhv*conj(I_sh_newhv*exp(j*gamma_newhv)));
Pse_newhv=real(V_se_newhv*exp(j*rho)*conj(I_s_newhv));
% Constraints
% Nonlinear equality constraints
ceq = [ Psh_newhv - Pse_newhv;Qs_newhv];
c = [];
end
0 Comments
Accepted Answer
Torsten
on 27 Jul 2024
Edited: Torsten
on 27 Jul 2024
Use
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-12);
instead of
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-6);
But why do you use "fmincon" to solver a system of two nonlinear equations ? "fsolve" usually is the solver of choice.
rho = 0:2*pi/72:2*pi;
% Initial guess
x0 = [0 0];
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-12);
% Constraints
lb = [];
ub = [];
% Solve for each rho
for m = 1:73
% Define the nonlinear constraint function
fun_newhv = @(x_newhv) myfun_newhv(x_newhv, rho(m));
% Use fmincon to solve the problem
[x_newhv, fval_newhv, exitflag_newhv(m), output_newhv] = fmincon(@(x_newhv) 0, x0, [], [], [], [], lb, ub, fun_newhv, options);
% Extract solutions
gamma_newhv(m) = x_newhv(1);
I_sh_newhv(m) = x_newhv(2);
[~,ceq(:,m)] = fun_newhv(x_newhv);
end
hold on
plot(1:m,ceq(1,:),'b')
plot(1:m,ceq(2,:),'r')
hold off
grid on
% Nonlinear constraint function
function [c, ceq] = myfun_newhv(x_newhv, rho)
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Extract variables
gamma_newhv = x_newhv(1);
I_sh_newhv = x_newhv(2);
% Compute intermediate quantities
I_r_newhv=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
I_s_newhv=0.5*I_sh_newhv*exp(j*gamma_newhv)*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv*exp(j*-pi/6);
Qs_newhv=imag(V_s*conj(I_s_newhv));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho))*exp(j*-pi/3);
Psh_newhv=real(V_tap_newhv*conj(I_sh_newhv*exp(j*gamma_newhv)));
Pse_newhv=real(V_se_newhv*exp(j*rho)*conj(I_s_newhv));
% Constraints
% Nonlinear equality constraints
ceq = [ Psh_newhv - Pse_newhv;Qs_newhv];
c = [];
end
3 Comments
Torsten
on 27 Jul 2024
Edited: Torsten
on 27 Jul 2024
rho = 0:2*pi/72:2*pi;
% Initial guess
x0 = [0 0];
% Options for fsolve
options = optimoptions('fsolve', 'Display', 'off');
% Solve for each rho
for m = 1:73
% Define the equations
fun_newhv = @(x_newhv) myfun_newhv(x_newhv, rho(m));
% Use fsolve to solve the problem
[x_newhv, fval_newhv, exitflag_newhv(m), output_newhv] = fsolve(fun_newhv, x0, options);
% Extract solutions
gamma_newhv(m) = x_newhv(1);
I_sh_newhv(m) = x_newhv(2);
res(:,m) = fval_newhv;
x0 = x_newhv;
end
hold on
plot(1:m,res(1,:),'b')
plot(1:m,res(2,:),'r')
hold off
grid on
% Nonlinear equations
function res = myfun_newhv(x_newhv, rho)
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Extract variables
gamma_newhv = x_newhv(1);
I_sh_newhv = x_newhv(2);
% Compute intermediate quantities
I_r_newhv=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
I_s_newhv=0.5*I_sh_newhv*exp(j*gamma_newhv)*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv*exp(j*-pi/6);
Qs_newhv=imag(V_s*conj(I_s_newhv));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho))*exp(j*-pi/3);
Psh_newhv=real(V_tap_newhv*conj(I_sh_newhv*exp(j*gamma_newhv)));
Pse_newhv=real(V_se_newhv*exp(j*rho)*conj(I_s_newhv));
res = [ Psh_newhv - Pse_newhv;Qs_newhv];
end
More Answers (0)
See Also
Categories
Find more on Systems of Nonlinear Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!