INTEGARTION OF BESSELH function

43 views (last 30 days)
george veropoulos
george veropoulos on 19 Nov 2024 at 21:20
Commented: george veropoulos about 2 hours ago
Hi
i make a code where i integrate the hankel function besselh(0, 2)
function z = Escat(r,phi)
[f,N,ra,k0,Z0] =parameter();
[Is]=currentMoM()
Phim=zeros(N+1);
FINAL=0;
for jj=1:N
%Phi0(jj)=(jj-1).*(pi./N);
Phi0(jj)=(jj-1).*(2.*pi./N);
FINAL=FINAL-(k0.*Z0./4).*Is(jj).*ra.*integral(@(xx)besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*(phi-xx))),Phi0(jj),2*pi/N+Phi0(jj));
end
z=FINAL;
end
when i plot the function in the range φ=0 : 2π with r=const the valus of Escat are extremely bih value ...
clear all
clc
[f,N,ra,k0,Z0] = parameter();
%ph_i=pi/2;
rho=10.*ra ;
phi=0:pi/180:2*pi;
Es=zeros(length(phi));
%phi=0:pi/200:pi/3
for jj=1:length(phi)
Es(jj)=abs(Escat(rho,phi(jj)));
end
plot(phi*(180./pi),Es,'b--')
hold on
%plot(phi*(180./pi),abs(integ),'b--')
plot(phi,abs(Escattheory_new(rho,phi)),'r-')
xlabel('$\phi$','Interpreter','latex')
ylabel('$|E_{s}|$','Interpreter','latex' )
%legend('MoM', 'Theory')
hold off
can i check if the the integration is ok ?
the parameter fucntion is
function [f,N,ra,k0,Z0] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
N=80;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
thank you
  5 Comments
george veropoulos
george veropoulos on 20 Nov 2024 at 13:07
Moved: Steven Lord on 20 Nov 2024 at 14:49
function y=e_n(k)
if k==0
y=1;
elseif k~=0
y=2;
end
end
Steven Lord
Steven Lord on 20 Nov 2024 at 14:49
If you're adding information, please put it as a comment rather than a separate answer. Leave the answer for posts that may be a solution to the problem, to make them easier to distinguish from commentary.

Sign in to comment.

Accepted Answer

David Goodmanson
David Goodmanson about 5 hours ago
Hi george,
I don't know what the values of your parameters are, but I suspect that the problem with Escat is that
besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*(phi-xx)))
is missing a cosine factor and should be
besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*cos(phi-xx)))
Without the cosine, it's possible for the argument of the sqrt to become negative, which causes the argument of besselh to become imaginary, which leads to very large values in the result.

More Answers (0)

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Products


Release

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!