non linear regression code
11 views (last 30 days)
Show older comments
I did linear regression by the code below. data set is attached.
clear;
clc
load('data.mat');
F=F'; T=T'; W=W';
Q1=F;
Q2=T;
X=[Q1 Q2];
for i=1:70
Y=W(:,i);
% b = regress(Y,X,0.05);
mdl{i} = fitlm(X,Y);
XX{i}= mdl{i}.Coefficients;
rmqs(i)=mdl{i}.RMSE;
for j=1:3
b(i,j)=XX{i}{j,1};
er(i,j)=XX{i}{j,2};
end
end
I want to change this code to fit the data for a non-linear model. which is,
Y~b0+b1*Q1+b2*Q2+b3*cos(2*pi*T+b4)
instead,
Y~b0+b1*Q1+b2*Q2
I need the coefficients with errors. How can I do that?
0 Comments
Answers (1)
Brendan Hamm
on 12 Aug 2015
Is T a predictor variable in this equation or a constant? If it is a constant you would want to create a function handle (which nlinfit requires anyhow, but fitnlm accepts). If it is a predictor you would need to place it in the matrix X and you can pass the modelspec in fitnlm as:
modelspec = 'y~b1+b2*x1+b3*x2+b4*cos(2*pi*x3+b5)';
I imagine you would want to estimate the frequency as well, unless this is known a priori.
4 Comments
Brendan Hamm
on 13 Aug 2015
As useful as google sounds like a complement, thank you. I might have to place that on my resume.
See Also
Categories
Find more on Linear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!