How to use quadprog for this multi-dimension problem?

4 views (last 30 days)

I am trying to use quadprog.m to solve the following 2 dimensional optimization problem.

where $(x_i,y_i)$ is the data point.

How may I implement this 2 dimensional problem in matlab by quadprog? I can do for 1 dimensional problem, i.e., only with $\alpha_i$. But now I have $\alpha_i$ and $\alpha_i'$, i.e., two sets of unknown.

Accepted Answer

Alan Weiss
Alan Weiss on 5 Nov 2015
Edited: Alan Weiss on 5 Nov 2015
All Optimization Toolbox™ solvers require that you put your control variables into a single vector, typically called x. For your case, I suggest that you set the column vector x to be
x = [alpha;alphaprime];
In other words, just concatenate your two existing column vectors of unknowns into one longer column vector. Given this transformation, it is not too difficult to write matrices H and f to represent your problem in the requisite form
1/2*x'*H*x + f*x
Remember, quadprog minimizes, so if you are looking for a maximum, take the negative of your objective function.
If you cannot figure out how to do it with quadprog, you can always use fmincon.
Alan Weiss
MATLAB mathematical toolbox documentation
  3 Comments
Matt J
Matt J on 5 Nov 2015
You say you can write the Hessian H0 for the single unknown vector case. For this case, they will be related by
H = [I,-I].' * H0 * [I,-I]
where I=eye(n);

Sign in to comment.

More Answers (0)

Categories

Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!