Help plotting FFT from column vector with real and imaginary parts.
8 views (last 30 days)
Show older comments
Robert Evans
on 30 Nov 2015
Commented: Joseph Nichols
on 24 Jun 2023
Hello, I'm attempting to plot the fft from the data taken from an oscilloscope and saved in Excel.
I've saved the data in matlab as a column vector with 200 data points of real and imaginary parts, called 'data', and I'm trying to get an accurate FFT plot. The plot that comes out doesn't look like the FFT spikes I'm expecting; rather its just a strange squiggle. I was wondering if anybody has any insight into what I'm doing wrong. My code is:
>> freq = fft (data)
freq =
-1.2128 + 0.0000i
2.1644 + 5.0673i
0.2578 + 1.0098i
0.0654 + 0.6253i
0.0270 + 0.4352i
0.0174 + 0.3877i
0.0068 + 0.3035i
-0.0008 + 0.2554i
-0.0048 + 0.2123i
-0.0101 + 0.1999i
0.0021 + 0.1944i
-0.0191 + 0.1507i
-0.0352 + 0.1421i
-0.0275 + 0.1331i
-0.0235 + 0.1287i
-0.0528 + 0.1290i
-0.0094 + 0.0996i
-0.0388 + 0.0833i
-0.0216 + 0.0892i
-0.0338 + 0.0902i
-0.0159 + 0.0837i
-0.0284 + 0.0609i
-0.0360 + 0.0834i
-0.0358 + 0.0962i
-0.0206 + 0.0791i
-0.0261 + 0.0670i
-0.0314 + 0.0603i
-0.0204 + 0.0536i
-0.0122 + 0.0511i
-0.0247 + 0.0404i
-0.0297 + 0.0425i
-0.0275 + 0.0417i
-0.0325 + 0.0510i
-0.0250 + 0.0568i
-0.0192 + 0.0415i
-0.0296 + 0.0531i
-0.0199 + 0.0475i
-0.0255 + 0.0470i
-0.0340 + 0.0470i
-0.0225 + 0.0298i
-0.0254 + 0.0361i
-0.0179 + 0.0413i
-0.0312 + 0.0294i
-0.0364 + 0.0124i
-0.0237 + 0.0331i
-0.0264 + 0.0207i
-0.0172 + 0.0344i
-0.0181 + 0.0243i
-0.0486 + 0.0343i
-0.0056 + 0.0411i
-0.0436 + 0.0328i
-0.0230 + 0.0237i
-0.0372 + 0.0243i
-0.0291 + 0.0368i
-0.0212 + 0.0038i
-0.0266 + 0.0212i
-0.0309 + 0.0148i
-0.0411 + 0.0130i
-0.0279 + 0.0245i
-0.0151 + 0.0134i
-0.0347 + 0.0158i
-0.0324 + 0.0211i
-0.0287 + 0.0202i
-0.0305 + 0.0307i
-0.0145 + 0.0180i
-0.0227 + 0.0106i
-0.0480 + 0.0169i
-0.0270 + 0.0098i
-0.0301 + 0.0193i
-0.0271 + 0.0160i
-0.0410 + 0.0047i
-0.0239 + 0.0182i
-0.0198 + 0.0074i
-0.0419 + 0.0206i
-0.0228 + 0.0139i
-0.0150 + 0.0014i
-0.0281 + 0.0141i
-0.0280 + 0.0145i
-0.0460 + 0.0218i
-0.0194 + 0.0152i
-0.0303 - 0.0020i
-0.0215 + 0.0226i
-0.0372 - 0.0002i
-0.0243 + 0.0146i
-0.0262 + 0.0152i
-0.0350 + 0.0149i
-0.0252 + 0.0092i
-0.0154 + 0.0027i
-0.0391 - 0.0037i
-0.0301 + 0.0099i
-0.0439 - 0.0088i
-0.0103 + 0.0423i
-0.0094 - 0.0096i
-0.0434 + 0.0049i
-0.0310 + 0.0006i
-0.0493 + 0.0002i
0.0009 + 0.0156i
-0.0324 - 0.0052i
-0.0360 + 0.0146i
-0.0138 - 0.0139i
-0.0548 + 0.0000i
-0.0138 + 0.0139i
-0.0360 - 0.0146i
-0.0324 + 0.0052i
0.0009 - 0.0156i
-0.0493 - 0.0002i
-0.0310 - 0.0006i
-0.0434 - 0.0049i
-0.0094 + 0.0096i
-0.0103 - 0.0423i
-0.0439 + 0.0088i
-0.0301 - 0.0099i
-0.0391 + 0.0037i
-0.0154 - 0.0027i
-0.0252 - 0.0092i
-0.0350 - 0.0149i
-0.0262 - 0.0152i
-0.0243 - 0.0146i
-0.0372 + 0.0002i
-0.0215 - 0.0226i
-0.0303 + 0.0020i
-0.0194 - 0.0152i
-0.0460 - 0.0218i
-0.0280 - 0.0145i
-0.0281 - 0.0141i
-0.0150 - 0.0014i
-0.0228 - 0.0139i
-0.0419 - 0.0206i
-0.0198 - 0.0074i
-0.0239 - 0.0182i
-0.0410 - 0.0047i
-0.0271 - 0.0160i
-0.0301 - 0.0193i
-0.0270 - 0.0098i
-0.0480 - 0.0169i
-0.0227 - 0.0106i
-0.0145 - 0.0180i
-0.0305 - 0.0307i
-0.0287 - 0.0202i
-0.0324 - 0.0211i
-0.0347 - 0.0158i
-0.0151 - 0.0134i
-0.0279 - 0.0245i
-0.0411 - 0.0130i
-0.0309 - 0.0148i
-0.0266 - 0.0212i
-0.0212 - 0.0038i
-0.0291 - 0.0368i
-0.0372 - 0.0243i
-0.0230 - 0.0237i
-0.0436 - 0.0328i
-0.0056 - 0.0411i
-0.0486 - 0.0343i
-0.0181 - 0.0243i
-0.0172 - 0.0344i
-0.0264 - 0.0207i
-0.0237 - 0.0331i
-0.0364 - 0.0124i
-0.0312 - 0.0294i
-0.0179 - 0.0413i
-0.0254 - 0.0361i
-0.0225 - 0.0298i
-0.0340 - 0.0470i
-0.0255 - 0.0470i
-0.0199 - 0.0475i
-0.0296 - 0.0531i
-0.0192 - 0.0415i
-0.0250 - 0.0568i
-0.0325 - 0.0510i
-0.0275 - 0.0417i
-0.0297 - 0.0425i
-0.0247 - 0.0404i
-0.0122 - 0.0511i
-0.0204 - 0.0536i
-0.0314 - 0.0603i
-0.0261 - 0.0670i
-0.0206 - 0.0791i
-0.0358 - 0.0962i
-0.0360 - 0.0834i
-0.0284 - 0.0609i
-0.0159 - 0.0837i
-0.0338 - 0.0902i
-0.0216 - 0.0892i
-0.0388 - 0.0833i
-0.0094 - 0.0996i
-0.0528 - 0.1290i
-0.0235 - 0.1287i
-0.0275 - 0.1331i
-0.0352 - 0.1421i
-0.0191 - 0.1507i
0.0021 - 0.1944i
-0.0101 - 0.1999i
-0.0048 - 0.2123i
-0.0008 - 0.2554i
0.0068 - 0.3035i
0.0174 - 0.3877i
0.0270 - 0.4352i
0.0654 - 0.6253i
0.2578 - 1.0098i
2.1644 - 5.0673i
>> plot (freq)
Any help would be appreciated.
0 Comments
Accepted Answer
Rick Rosson
on 1 Dec 2015
Edited: Rick Rosson
on 1 Dec 2015
N = length(data);
freq = fftshift(fft(data))/N;
plot(abs(freq));
More Answers (1)
See Also
Categories
Find more on Fourier Analysis and Filtering in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!