Matlab code help on Euler's Method

2,960 views (last 30 days)
I have to implement for academic purpose a Matlab code on Euler's method(y(i+1) = y(i) + h * f(x(i),y(i))) which has a condition for stopping iteration will be based on given number of x. I am new in Matlab but I have to submit the code so soon. I am facing lots of error in implementing that though I haven't so many knowledge on Matlab. If anyone provide me so easy and simple code on that then it'll be very helpful for me. Thank you.
  1 Comment
Muhammad Tahir
Muhammad Tahir on 24 Dec 2023
Moved: Dyuman Joshi on 26 Dec 2023
y'=2x-3y+1, y(1)=5, y(1.2)=? MATLAB code using euler'method to obtain a four decimal and h= 0.1

Sign in to comment.

Accepted Answer

James Tursa
James Tursa on 11 Apr 2016
Here is a general outline for Euler's Method:
% Euler's Method
% Initial conditions and setup
h = (enter your step size here); % step size
x = (enter the starting value of x here):h:(enter the ending value of x here); % the range of x
y = zeros(size(x)); % allocate the result y
y(1) = (enter the starting value of y here); % the initial y value
n = numel(y); % the number of y values
% The loop to solve the DE
for i=1:n-1
f = the expression for y' in your DE
y(i+1) = y(i) + h * f;
end
It is based on this link, which you have already read:
You need to fill in the values indicated, and also write the code for the f line. What is the DE you are trying to solve?
  4 Comments
ATUL
ATUL on 10 Mar 2023
how many iterations, we will decide in this?
Ahmed J. Abougarair
Ahmed J. Abougarair on 20 Mar 2024
% Euler's Method
% Initial conditions and setup
clc
clear
h = input('Enter your step size here :'); % step size
x = input('Enter the starting value of x :');
xend = input('Enter the ending value of xend :'); % the range of x
n = (xend-x)/h; % the number of y values
y = zeros(1,n); % allocate the result y
y(1) = input('Enter the starting value of y :'); % the initial y value
% The loop to solve the DE
for i=1:n
f(i) = 6- 2*(y(i)/x(i)); % dy/dx = 6-2y/x
y(i+1) = y(i) + h * f(i);
x(i+1)=x(i)+h;
end
[x' y']

Sign in to comment.

More Answers (3)

mahmoud mohamed abd el kader
h=0.5;
x=0:h:4;
y=zeros(size(x));
y(1)=1;
n=numel(y);
for i = 1:n-1
dydx= -2*x(i).^3 +12*x(i).^2 -20*x(i)+8.5 ;
y(i+1) = y(i)+dydx*h ;
fprintf('="Y"\n\t %0.01f',y(i));
end
%%fprintf('="Y"\n\t %0.01f',y);
plot(x,y);
grid on;
  4 Comments
James Tursa
James Tursa on 3 Mar 2021
Edited: James Tursa on 3 Mar 2021
@shireesha myadari Please delete this comment and open up a new question for this.
Ahmed J. Abougarair
Ahmed J. Abougarair on 20 Mar 2024
% Euler's Method
% Initial conditions and setup
clc
clear
h = input('Enter your step size here :'); % step size
x = input('Enter the starting value of x :');
xend = input('Enter the ending value of xend :'); % the range of x
n = (xend-x)/h; % the number of y values
y = zeros(1,n); % allocate the result y
y(1) = input('Enter the starting value of y :'); % the initial y value
% The loop to solve the DE
for i=1:n
f(i) = 6- 2*(y(i)/x(i)); % dy/dx = 6-2y/x
y(i+1) = y(i) + h * f(i);
x(i+1)=x(i)+h;
end
[x' y']

Sign in to comment.


Bakary Badjie
Bakary Badjie on 14 Jun 2021
what is the Matlab function that implements Euler’s method
  1 Comment
Chris Horne
Chris Horne on 31 Mar 2022
Is the term 'forward Euler' the same as 'Euler' in terms of the algorithm? Here is my method for solving 3 equaitons as a vector:
% This code solves u'(t) = F(t,u(t)) where u(t)= t, cos(t), sin(t)
% using the FORWARD EULER METHOD
% Initial conditions and setup
neqn = 3; % set a number of equations variable
h=input('Enter the step size: ') % step size will effect solution size
t=(0:h:4).';%(starting time value 0):h step size
nt = size(t,1); % size of time array
%(the ending value of t ); % the range of t
% define the function vector, F
F = @(t,u)[t,cos(t),sin(t)]; % define the function 'handle', F
% with hard coded vector functions of time
u = zeros(nt,neqn); % initialize the u vector with zeros
v=input('Enter the intial vector values of 3 components using brackets [u1(0),u2(0),u3(0)]: ')
u(1,:)= v; % the initial u value and the first column
%n=numel(u); % the number of u values
% The loop to solve the ODE (Forward Euler Algorithm)
for i = 1:nt-1
u(i+1,:) = u(i,:) + h*F(t(i),u(i,:)); % Euler's formula for a vector function F
end

Sign in to comment.


Rakshana
Rakshana on 13 Nov 2022
h=0.5; x=0:h:4; y=zeros(size(x)); y(1)=1; n=numel(y); for i = 1:n-1 dydx= -2*x(i).^3 +12*x(i).^2 -20*x(i)+8.5 ; y(i+1) = y(i)+dydx*h ; fprintf('="Y"\n\t %0.01f',y(i)); end %%fprintf('="Y"\n\t %0.01f',y); plot(x,y); grid on;

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!