non linear optimization.

1 view (last 30 days)
Kommineni chandra sekhar
Kommineni chandra sekhar on 3 May 2017
Commented: Torsten on 4 May 2017
CT_mod= (alpha).*(((tetaT).*den_T.*pi.*(DT.^2).*LT)./4).*c_T;
CH1_mod = ((1-alpha).*(((tetaT).*den_T.*pi.*(DT.^2).*LT)./4).*c_T)+((beta).*((tetaH).*den_H.*(pi./12).*LH.*((DT.^2)+(DC.^2)+(DT.*DC))).*c_H);
CH2_mod = (1-beta-gama).*((tetaH).*den_H.*(pi/12).*LH.*((DT.^2)+(DC.^2)+(DT.*DC))).*c_H;
CH3_mod = ((1-epsi).*((((tetaC).*den_C.*pi.*(DC.^2).*LC)./4).*c_C))+((gama).*((tetaH).*den_H.*(pi/12).*LH.*((DT.^2)+(DC.^2)+(DT.*DC))).*c_H);
CC_mod = (epsi).*((((tetaC).*den_C.*pi.*(DC.^2).*LC)./4).*c_C);
I want to solve above equations for alpha,beta,gama,epsi,tetaT,tetaH,tetaC, remaining CT_mod,CH1_mod,CH2_mod,CH3_mod,CC_mod,DT,DC,LH,LT,LC are known parameter. Above equations are repeated for 8 different objects. so, total around 40 equations. I tried different possible ways to solve, But I couldn't. I want to minimise above equations, i.e minimising RMSE, finding better unknowns. could someone help me to figure it out?
  1 Comment
Kommineni chandra sekhar
Kommineni chandra sekhar on 4 May 2017
could anyone help me with the solution, please?

Sign in to comment.

Answers (1)

Torsten
Torsten on 4 May 2017
Use "lsqnonlin".
Best wishes
Torsten.
  2 Comments
Kommineni chandra sekhar
Kommineni chandra sekhar on 4 May 2017
Thank you Torsten for your reply, could you please elaborate your answer because I tried with lsqnonlin also. I'm confused with constrain and unconstrains in the syntax.
Torsten
Torsten on 4 May 2017
Please post your MATLAB code so far.
Best wishes
Torsten.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!