Lsqcurvefit - multiple parameters - two variables

26 views (last 30 days)
Hello,
I'm currently working on a function of two variables of the type z=f(x,y), controlled by 4 parameters, and I would like to fit data I obtained to my theoretical function. I read detailed post about how to dit with lsqcurvefit, but a problem remains. This is how I did :
function Sigma = Sigma_funct(p,Var)
Sigma = f(p(1),p(2),p(3),p(4), x,y)
end
with lets say Var(1) = x and Var(2) = y. Then, I'm supposed to use the following syntax :
p0 = [3,1,2,10] ;
x = lsqcurvefit(@Sigma_funct,p0,[x y],Sigma_data) ;
However, my problem is that x and y have different size, meaning that Sigma_data isn't a squared matrix : I can't concatenate x and y. How am I supposed to do ?
Thanks for your answers !
P.S : Just to say it, f is linear neither in parameters nor in variables.
  2 Comments
Torsten
Torsten on 16 May 2017
It's not clear what the size of the matrix "Sigma_data" is and what it contains.
Best wishes
Torsten.
Cyril GADAL
Cyril GADAL on 16 May 2017
Edited: Cyril GADAL on 16 May 2017
You're right. So I have a vector x of size N and y of size M such that Sigma_data is of size N*M : I would then have for the theoretical values Sigma(i,j) = f(xi, xj) and then would like to fit this to Sigma_data using lsqcurvefit.

Sign in to comment.

Accepted Answer

Torsten
Torsten on 16 May 2017
p0 = [3,1,2,10] ;
xdata = zeros(numel(x)*numel(y),1);
ydata = reshape(Sigma_data,[numel(x)*numel(y),1]);
p_sol = lsqcurvefit(@(p,xdata)Sigma_funct(p,xdata,x,y),p0,xdata,ydata);
function Sigma = Sigma_funct(p,xdata,x,y)
Sigma_mat = f(p(1),p(2),p(3),p(4),x,y)
Sigma = reshape(Sigma_mat,[numel(x)*numel(y),1]);
end
Best wishes
Torsten.
  5 Comments
Torsten
Torsten on 16 May 2017
Edited: Torsten on 16 May 2017
The only thing that matters for "lsqcurvefit" is how the ydata-vector depends on the parameter vector.
The xdata-vector is only introduced to make things easier for you if the relationship between parameter vector and ydata-vector can be established easily by an equation of the form
ydata(i) = func(p,xdata(i)) (i=1,...,N*M)
e.g. for linear regression ydata(i) = p(1)+p(2)*xdata(i).
But this is not the case for your problem - so don't worry about the "xdata"-vector.
Best wishes
Torsten.
Cyril GADAL
Cyril GADAL on 16 May 2017
Understood.
Thank you very much for your time !

Sign in to comment.

More Answers (0)

Categories

Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!