ode45 for the shooting method.
3 views (last 30 days)
Show older comments
I want to predict a constant for the target height for the given ode problem. The target height is highly dependent on the constant alpha. Some one told me to use shooting /iterative methods but I am new for such a method. I need your help.
zspan=[0,400];
v0mat = [1 0.01 1];
zsol = {};
v1sol = {};
v2sol = {};
v3sol = {};
for k=1:size(v0mat,1)
v0=v0mat(k,:);
[z,v]=ode45(@rhs,zspan,v0);
zsol{k}=z;
v1sol{k}=v(:,1);
v2sol{k}=v(:,2);
v3sol{k}=v(:,3);
end
for r=1:length(v2sol)
q(r)=r;
end
for k1 = 1:length(v2sol)
zsol04(k1) = interp1(v2sol{k1}, zsol{k1}, 0.4);
end
figure()
scatter(q,zsol04,'p')
xlabel('q')
ylabel('Height')
function parameters=rhs(z,v)
alpha=0.08116;
db= 2*alpha-(v(1).*v(3))./(2*v(2).^2);
dw= (v(3)./v(2))-(2*alpha*v(2)./v(1));
dgmark= -(2*alpha*v(3)./v(1));
parameters=[db;dw;dgmark];
end
7 Comments
Torsten
on 9 Apr 2018
Please read my answer again:
Use "bvp4c" with three boundary conditions at h=0, one boundary condition as v2(height)=0.4 and a free parameter alpha.
Best wishes
Torsten.
Answers (0)
See Also
Categories
Find more on Global or Multiple Starting Point Search in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!