ode45 for the shooting method.

3 views (last 30 days)
Dereje
Dereje on 6 Apr 2018
Commented: Dereje on 9 Apr 2018
I want to predict a constant for the target height for the given ode problem. The target height is highly dependent on the constant alpha. Some one told me to use shooting /iterative methods but I am new for such a method. I need your help.
zspan=[0,400];
v0mat = [1 0.01 1];
zsol = {};
v1sol = {};
v2sol = {};
v3sol = {};
for k=1:size(v0mat,1)
v0=v0mat(k,:);
[z,v]=ode45(@rhs,zspan,v0);
zsol{k}=z;
v1sol{k}=v(:,1);
v2sol{k}=v(:,2);
v3sol{k}=v(:,3);
end
for r=1:length(v2sol)
q(r)=r;
end
for k1 = 1:length(v2sol)
zsol04(k1) = interp1(v2sol{k1}, zsol{k1}, 0.4);
end
figure()
scatter(q,zsol04,'p')
xlabel('q')
ylabel('Height')
function parameters=rhs(z,v)
alpha=0.08116;
db= 2*alpha-(v(1).*v(3))./(2*v(2).^2);
dw= (v(3)./v(2))-(2*alpha*v(2)./v(1));
dgmark= -(2*alpha*v(3)./v(1));
parameters=[db;dw;dgmark];
end
  7 Comments
Torsten
Torsten on 9 Apr 2018
Please read my answer again:
Use "bvp4c" with three boundary conditions at h=0, one boundary condition as v2(height)=0.4 and a free parameter alpha.
Best wishes
Torsten.
Dereje
Dereje on 9 Apr 2018
Hi Torsten, Yes I get it now. I was mixing the two boundary conditions. Thanks a lot!! It was better if u put your comments in the 'Answer this question' section so that I could be able to accept the answer.

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!