How to write multiple data in an excel file in .xls/.csv format using xlsappend function.

1 view (last 30 days)
I want to store a data of 105*150 in a single excel file. I have 150 files. Each image file provides 105 features in a single iteration. xlswrite function gives 150 distrinct excel files. Altghough, I need one excel output file. I used xlsappend function but it yields a single excel file with one rows. How it can be overcomed.
  2 Comments
Jan
Jan on 15 Apr 2018
Post your code. How could we suggest a modification without seeing the current version? In addition you mention "xlsappend", but this is not a toolbox function of Matlab. Do you mean the submission from the FileExchange?
I guess, that you create a new file name in each iteration instead of using the same file.
Jhilam Mukherjee
Jhilam Mukherjee on 16 Apr 2018
Yes, I download the code from FileExchange. featuremeasurement=regionprops(I{i},K{i},'all'); n=size(featuremeasurement, 1); %figure,imshow(K),title('Segmented Image'); hold on; boundaries = bwboundaries(K{i}); b = bwboundaries(K{i}); R=zeros(10,10); numberOfBoundaries = size(b, 1); for k=1:numberOfBoundaries thisBoundary = boundaries{k}; plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2); %m = mean(K(thisnodulePixels)); % Find mean intensity (in original image!) %F(k) = extractHOGFeatures(K) a(k)= featuremeasurement(k).Area; % Get area. p(k) = featuremeasurement(k).Perimeter; % Get perimeter. e(k) = featuremeasurement(k).Eccentricity; %Get Shape factor ECD(k) = sqrt(4 * a(k) / pi); % Compute ECD - Equivalent Circular Diameter. %compute compactness FA(k)=featuremeasurement(k).FilledArea; EU(k)=featuremeasurement(k).EulerNumber; maxl(k)=featuremeasurement(k).MajorAxisLength; minl(k)=featuremeasurement(k).MinorAxisLength; aspect_ratio(k)=minl(k)/maxl(k); Cir(k)=(4*pi*a(k)/p(k)^2); bobox(k)=featuremeasurement(k).Extent; cp(k)=(4 * a(k) * pi)/p(k)^2; SF1(k)=1/(cp(k)); SF2(k)=maxl(k)/a(k); SF3(k)=a(k)/maxl(k)^3; SF4(k)=a(k)/((maxl(k)/2)*(minl(k)/2)*pi); aa(k)=a(k)-FA(k); IrA(k)=p(k)/a(k); IrB(k)=p(k)/maxl(k); IrC(k)=p(k)*(1/minl(k)-1/maxl(k)); IrD(k)=maxl(k)-minl(k); X(k)=maxl(k)*minl(k); EV(k)=((rem(X(k),6))+2)/100; % compute Edge variation %C(k,:)= %fprintf(1,'%2d%8.4f%8.4f%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n ',k,frac,sol(k),shape(k), cp(k),IrA(k),IrB(k),IrC(k),IrD(k),EV(k)); % texture Feature %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E(k) = entropy(K{i}); st(k)=std2(K{i}); XX=graycomatrix(K{i},'Offset',[2 0]); tx(k)=graycoprops(XX,'All'); con(k)=tx(k).Contrast; cor(k)=tx(k).Correlation; en(k)=tx(k).Energy; ho(k)=tx(k).Homogeneity; [~, AOH, PhiOH] = Zernikmoment(K{i},4,2); R=[a(k),p(k),ECD(k),maxl(k),minl(k),aspect_ratio(k),Cir(k),cp(k),SF1(k),SF2(k),SF3(k),SF4(k),IrA(k),IrB(k),IrC(k),IrD(k),X(k), EV(k),E(k),st(k),con(k),cor(k),en(k),ho(k),AOH]; [success,message] = xlsappend('C:\Users\acer\Dropbox\feature15\feature.xls',R,1); clear vars; end

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!