# How to plot matrix data ?

6 views (last 30 days)
Shangeetha Mahendran on 19 Dec 2018
why figure 4, 5 are blanck?
sol =pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,zspan);
u=sol(:,:,1)
%%
surf(x,z,u)
ylabel('height')
%%
figure
plot(x/R,u(end,:)/u0)
ylabel('concentration')
%%
figure
plot(z/L,u(:, end)/u0)
xlabel('height')
ylabel('c')
%%
figure
for i =1:zn
hold on
plot(r/R,u(i,:))
hold off
end
xlabel('position ')
ylabel('concentration in every row')
%%
figure
for ii =1:xn
hold on
plot(z/L,u(:,ii))
hold off
end
xlabel('position ')
ylabel('concentration in every row')
##### 2 CommentsShowHide 1 older comment
Shangeetha Mahendran on 19 Dec 2018
I don't get that. you mean in figure 4 and 5?

KSSV on 19 Dec 2018
figure
hold on
for i =1:zn
plot(r/R,u(i,:),'.k')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
%%
figure
hold on
for ii =1:xn
plot(z/L,u(:,ii),'.')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
Shangeetha Mahendran on 19 Dec 2018
I have attached the full code here. still it's not working.
function pde1
clc; clear; close all
m=1; %cylindrical geometry
dm = 13.04e-6; % TM thickness (m)
r1 =R + dm; %radius of outer surface of membrane (m)
L=1.2; %height of the membrane (m)
Q = 6.5e-9; %volumetric flow rate
D=1.76e-9; %diffusion coefficient of ammonia in liquid m2/s
RT = 2477.6; %J/mol
H = 1.62; %Henry's law constant Pam^3/mol
u0= 285.1; %inflow concentration
zn=10; % grid line z (actually z denoted by t
xn = 10; % grid-steps channel x-axis(radius side)
xmesh = linspace(0,R,xn);
zspan =linspace(0,L,zn); %counter point of length% spatial solution domain (m)
dx = 1/(xn-1);
x = [xmesh]; %x vector
z =[zspan]; %t vector
U_a = Q/3.14/R^2; % average velocity
sol =pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,zspan);
u=sol(:,:,1)
surf(x,z,u)
ylabel('height')
figure
plot(x/R,u(end,:)/u0)
ylabel('concentration')
figure
plot(z/L,u(:, end)/u0)
xlabel('height')
ylabel('c')
figure
hold on
for i =1:zn
plot(r/R,u(i,:),'.k')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
figure
hold on
for ii =1:xn
plot(z/L,u(:,ii),'.')
hold off
end
xlabel('position ')
ylabel('concentration in every colomn')
%%
function [c,f,s]= pdefun(x,t,u,DuDx)
c = U_a/D;
f = DuDx;
s=0;
end
%% initial condition
function u0 = pdeic(x)
u0 =285.1;
end
%%
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl=0;
ql=1;
pr=u0;
qr=1;
end
save('results.mat');
end

Shangeetha Mahendran on 19 Dec 2018
This is the correct code. and i have to get out put like attached images.
function pde1
clc; clear; close all
m=1; %cylindrical geometry
dm = 13.04e-6; % TM thickness (m)
r1 =R + dm; %radius of outer surface of membrane (m)
L=1.2; %height of the membrane (m)
Q = 6.5e-9; %volumetric flow rate
D=1.76e-9; %diffusion coefficient of ammonia in liquid m2/s
RT = 2477.6; %J/mol
H = 1.62; %Henry's law constant Pam^3/mol
u0= 285.1; %inflow concentration
zn=10; % grid line z (actually z denoted by t
xn = 10; % grid-steps channel x-axis(radius side)
xmesh = linspace(0,R,xn);
zspan =linspace(0,L,zn); %counter point of length% spatial solution domain (m)
dx = 1/(xn-1);
x = [xmesh]; %x vector
z =[zspan]; %t vector
U_a = Q/3.14/R^2; % average velocity
% u =zeros(tn,xn);
%removal = (C_row(1)-C_row(tn))/3.14/R.^2;
% pi()
%%
%U_z =zeros(1,xn);
%for ii=1:xn
%U_z(ii) =2*U_a *(1- x(ii)^2/R^2);
%end
%%
sol =pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,zspan);
u=sol(:,:,1)
surf(x,z,u)
ylabel('height')
figure
plot(x/R,u(end,:)/u0)
ylabel('concentration')
figure
plot(z/L,u(:, end)/u0)
xlabel('height')
ylabel('c')
figure
hold on
for i =1:zn
plot(x/R,u(i,:),'.k')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
figure
hold on
for ii =1:xn
plot(z/L,u(:,ii),'.')
hold off
end
xlabel('position ')
ylabel('concentration in every column')
%%
function [c,f,s]= pdefun(x,z,u,DuDx)
c = U_a/D;
f = DuDx;
s=0;
end
%% initial condition
function u0 = pdeic(x)
u0 =285.1;
end
%%
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,z)
pl=0;
ql=1;
pr=u0;
qr=1;
end
save('results.mat');
end

### Categories

Find more on Triangulation Representation in Help Center and File Exchange

R2017b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!