How to plot matrix data ?

6 views (last 30 days)
Shangeetha Mahendran
Shangeetha Mahendran on 19 Dec 2018
why figure 4, 5 are blanck?
sol =pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,zspan);
u=sol(:,:,1)
%%
surf(x,z,u)
xlabel('radi')
ylabel('height')
%%
figure
plot(x/R,u(end,:)/u0)
xlabel('radi')
ylabel('concentration')
%%
figure
plot(z/L,u(:, end)/u0)
xlabel('height')
ylabel('c')
%%
figure
for i =1:zn
hold on
plot(r/R,u(i,:))
hold off
end
xlabel('position ')
ylabel('concentration in every row')
%%
figure
for ii =1:xn
hold on
plot(z/L,u(:,ii))
hold off
end
xlabel('position ')
ylabel('concentration in every row')
  2 Comments
Shangeetha Mahendran
Shangeetha Mahendran on 19 Dec 2018
I don't get that. you mean in figure 4 and 5?

Sign in to comment.

Accepted Answer

KSSV
KSSV on 19 Dec 2018
figure
hold on
for i =1:zn
plot(r/R,u(i,:),'.k')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
%%
figure
hold on
for ii =1:xn
plot(z/L,u(:,ii),'.')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
  1 Comment
Shangeetha Mahendran
Shangeetha Mahendran on 19 Dec 2018
I have attached the full code here. still it's not working.
function pde1
clc; clear; close all
m=1; %cylindrical geometry
R=3e-3; %radius of lumen (m)
dm = 13.04e-6; % TM thickness (m)
r1 =R + dm; %radius of outer surface of membrane (m)
L=1.2; %height of the membrane (m)
Q = 6.5e-9; %volumetric flow rate
D=1.76e-9; %diffusion coefficient of ammonia in liquid m2/s
RT = 2477.6; %J/mol
H = 1.62; %Henry's law constant Pam^3/mol
u0= 285.1; %inflow concentration
zn=10; % grid line z (actually z denoted by t
xn = 10; % grid-steps channel x-axis(radius side)
xmesh = linspace(0,R,xn);
zspan =linspace(0,L,zn); %counter point of length% spatial solution domain (m)
dx = 1/(xn-1);
x = [xmesh]; %x vector
z =[zspan]; %t vector
U_a = Q/3.14/R^2; % average velocity
sol =pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,zspan);
u=sol(:,:,1)
surf(x,z,u)
xlabel('radi')
ylabel('height')
figure
plot(x/R,u(end,:)/u0)
xlabel('radi')
ylabel('concentration')
figure
plot(z/L,u(:, end)/u0)
xlabel('height')
ylabel('c')
figure
hold on
for i =1:zn
plot(r/R,u(i,:),'.k')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
figure
hold on
for ii =1:xn
plot(z/L,u(:,ii),'.')
hold off
end
xlabel('position ')
ylabel('concentration in every colomn')
%%
function [c,f,s]= pdefun(x,t,u,DuDx)
c = U_a/D;
f = DuDx;
s=0;
end
%% initial condition
function u0 = pdeic(x)
u0 =285.1;
end
%%
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl=0;
ql=1;
pr=u0;
qr=1;
end
save('results.mat');
end

Sign in to comment.

More Answers (1)

Shangeetha Mahendran
Shangeetha Mahendran on 19 Dec 2018
This is the correct code. and i have to get out put like attached images.
function pde1
clc; clear; close all
m=1; %cylindrical geometry
2.JPG
R=3e-3; %radius of lumen (m)
dm = 13.04e-6; % TM thickness (m)
r1 =R + dm; %radius of outer surface of membrane (m)
L=1.2; %height of the membrane (m)
Q = 6.5e-9; %volumetric flow rate
D=1.76e-9; %diffusion coefficient of ammonia in liquid m2/s
RT = 2477.6; %J/mol
H = 1.62; %Henry's law constant Pam^3/mol
u0= 285.1; %inflow concentration
zn=10; % grid line z (actually z denoted by t
xn = 10; % grid-steps channel x-axis(radius side)
xmesh = linspace(0,R,xn);
zspan =linspace(0,L,zn); %counter point of length% spatial solution domain (m)
dx = 1/(xn-1);
x = [xmesh]; %x vector
z =[zspan]; %t vector
U_a = Q/3.14/R^2; % average velocity
% u =zeros(tn,xn);
%removal = (C_row(1)-C_row(tn))/3.14/R.^2;
% pi()
%%
%U_z =zeros(1,xn);
%for ii=1:xn
%U_z(ii) =2*U_a *(1- x(ii)^2/R^2);
%end
%%
sol =pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,zspan);
u=sol(:,:,1)
surf(x,z,u)
xlabel('radi')
ylabel('height')
figure
plot(x/R,u(end,:)/u0)
xlabel('radi')
ylabel('concentration')
figure
plot(z/L,u(:, end)/u0)
xlabel('height')
ylabel('c')
figure
hold on
for i =1:zn
plot(x/R,u(i,:),'.k')
hold off
end
xlabel('position ')
ylabel('concentration in every row')
figure
hold on
for ii =1:xn
plot(z/L,u(:,ii),'.')
hold off
end
xlabel('position ')
ylabel('concentration in every column')
%%
function [c,f,s]= pdefun(x,z,u,DuDx)
c = U_a/D;
f = DuDx;
s=0;
end
%% initial condition
function u0 = pdeic(x)
u0 =285.1;
end
%%
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,z)
pl=0;
ql=1;
pr=u0;
qr=1;
end
save('results.mat');
end

Categories

Find more on Triangulation Representation in Help Center and File Exchange

Products


Release

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!