I am trying to solve 3 simultaneous nonlinear system of equations by newton's method.

2 views (last 30 days)
I am trying to solve 3 simultaneous nonlinear system of equations by newton's method. I am getting an error in solving that system.
The code is written below.
clear all
syms x y z
a=[1;1;1];
% The Newton-Raphson iterations starts here
del=1;
indx=0;
h=4;
gma=18.4;
ka1=0.2;
kp1=8.76;
ka2=0.2;
kp2=8.76;
sind=0.437;
cosd=0.9;
pa1=ka1*gma*(h*x+0.5*(x^2));
pp1=kp1*gma*0.5*(x^2);
pa2=ka2*gma*(x*y+0.5*(y^2));
pp2=kp2*gma*(y*(h+x)+0.5*(y^2));
za1=(0.5*h*(x^2)+(x^3)/6)/(h*x+0.5*(x^2));
zp2=(0.5*(h+x)*(y^2)+((y^3)/3))/((h+x)*y+0.5*(y^2));
za2=(0.5*x*(y^2)+((y^3)/3))+(x*y+0.5*(y^2));
e1=(pp1*sind)-(pa1*sind)-(pp2*sind)-(pa2*sind);
e2=pp1*cosd+pa2*cosd-pa1*cosd-pp2*cosd-z;
e3=pp1*cosd*(x/3)+pp2*cosd*zp2-pa1*cosd*za1-pa2*cosd*za2-z*(x+(h/3));
while del>1e-6
g=[e1; e2; e3];
J=jacobian([e1, e2, e3], [x, y, z]);
delx=-inv(J)*g;
a=a+delx;
del=max(abs(g));
indx=indx+1;
end
'NEWTON-RAPHSON SOLUTION CONVERGES IN ITERATIONS',indx,pause
'FINAL VALUES OF x ARE',x

Accepted Answer

Torsten
Torsten on 23 Jan 2019
Don't use symbolic variables together with Newton-Raphson.
Instead of using "jacobian" , look at the solution suggested by John D'Errico under
https://de.mathworks.com/matlabcentral/answers/28066-numerical-jacobian-in-matlab
  6 Comments
Akshay Pratap Singh
Akshay Pratap Singh on 24 Jan 2019
Thank you very much Torsten
Now, I am having one problem that the code is working fine upto h=12 and giving good results. but as I increase h to 13, 14, 15 and so on. It is giving wrong values. Your help will be highly appreciated. Thank you in advance.
The code is written below as well as attached-
clear all
syms x y z
a=[1;1;1];
format longEng
% The Newton-Raphson iterations starts here
del=1;
indx=0;
h=13;
gma=18.4;
ka1=0.2;
kp1=8.7;
ka2=0.32;
kp2=8.7;
sinda1=0.437;
sindp1=0.437;
sinda2=0.437;
sindp2=0.437;
cosda1=0.9;
cosdp1=0.9;
cosda2=0.9;
cosdp2=0.9;
pa1=ka1*gma*0.5*(x^2);
pp1=kp1*gma*0.5*(x^2);
pa2=ka2*gma*((x*y)+0.5*(y^2));
pp2=kp2*gma*((x*y)+0.5*(y^2));
za1=x/3;
zp1=x/3;
zp2=(0.5*x*(y^2)+((y^3)/3))/((x*y)+0.5*(y^2));
za2=(0.5*x*(y^2)+((y^3)/3))/((x*y)+0.5*(y^2));
e1=(pp1*sindp1)-(pa1*sinda1)-(pp2*sindp2)-(pa2*sinda2);
e2=(pp1*cosdp1)+(pa2*cosda2)-(pa1*cosda1)-(pp2*cosdp2)-z;
e3=(pp1*cosdp1*zp1)+(pp2*cosdp2*zp2)-(pa1*cosda1*za1)-(pa2*cosda2*za2)-(z*(x+h));
g=[e1; e2; e3];
J=jacobian([e1, e2, e3], [x, y, z]);
while del>1e-6
gnum = double(subs(g,[x,y,z],[a(1),a(2),a(3)]));
Jnum = double(subs(J,[x,y,z],[a(1),a(2),a(3)]));
delx = -Jnum\gnum;
a = a + delx;
del = max(abs(gnum));
indx = indx + 1;
end
'NEWTON-RAPHSON SOLUTION CONVERGES IN ITERATIONS',indx,pause
'FINAL VALUES OF a ARE',a
Torsten
Torsten on 24 Jan 2019
Edited: Torsten on 24 Jan 2019
Use the result from the previous h as initial guess for the next h.
In your case:
Use
a=[1.87;0.74;17.47]; % approximate result for h=12
as initial "a" for h=13.
And I think you get faster convergence if you replace
gnum = double(subs(g,[x,y,z],[a(1),a(2),a(3)]));
Jnum = double(subs(J,[x,y,z],[a(1),a(2),a(3)]));
by
gnum = vpa(subs(g,[x,y,z],[a(1),a(2),a(3)]));
Jnum = vpa(subs(J,[x,y,z],[a(1),a(2),a(3)]));
You could try this code:
syms x y z h
a=[1;1;1];
format longEng
% The Newton-Raphson iterations starts here
H=linspace(2,30,29);
gma=18.4;
ka1=0.2;
kp1=8.7;
ka2=0.32;
kp2=8.7;
sinda1=0.437;
sindp1=0.437;
sinda2=0.437;
sindp2=0.437;
cosda1=0.9;
cosdp1=0.9;
cosda2=0.9;
cosdp2=0.9;
pa1=ka1*gma*0.5*(x^2);
pp1=kp1*gma*0.5*(x^2);
pa2=ka2*gma*((x*y)+0.5*(y^2));
pp2=kp2*gma*((x*y)+0.5*(y^2));
za1=x/3;
zp1=x/3;
zp2=(0.5*x*(y^2)+((y^3)/3))/((x*y)+0.5*(y^2));
za2=(0.5*x*(y^2)+((y^3)/3))/((x*y)+0.5*(y^2));
e1=(pp1*sindp1)-(pa1*sinda1)-(pp2*sindp2)-(pa2*sinda2);
e2=(pp1*cosdp1)+(pa2*cosda2)-(pa1*cosda1)-(pp2*cosdp2)-z;
e3=(pp1*cosdp1*zp1)+(pp2*cosdp2*zp2)-(pa1*cosda1*za1)-(pa2*cosda2*za2)-(z*(x+h));
g=[e1; e2; e3];
J=jacobian([e1, e2, e3], [x, y, z]);
A=zeros(3,numel(H));
for i=1:numel(H)
del = 1.0;
indx = 0;
while del>1e-6
gnum = vpa(subs(g,[x,y,z,h],[a(1),a(2),a(3),H(i)]));
Jnum = vpa(subs(J,[x,y,z,h],[a(1),a(2),a(3),H(i)]));
delx = -Jnum\gnum;
a = a + delx;
del = max(abs(gnum));
indx = indx + 1;
end
A(:,i)=double(a)
end
plot(H,A(3,:))

Sign in to comment.

More Answers (0)

Categories

Find more on Systems of Nonlinear Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!