Looking for an identity or process to break one function into to

1 view (last 30 days)
Would like to go from here:
(A'*C - B*C) / (A + B) to
A'*C/A - B*C/(A*(A+B))
Can anyone name this identity or process which pulls A'*C/A out of (A'*C - B*C) / (A + B) as shown above?
Thank you.
  1 Comment
CD
CD on 8 Feb 2019
I should have been more clear. I forgot to point out that there is a value "A" and value "A' " where A' = 1 -A.
I've tested this in excel:
A A' B C
0.2 0.8 2 3
(A'C - BC) / (A + B)
-1.636
A'C/A - BC/(A(A+B)
-1.636

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 8 Feb 2019
False. Suppose A = 5 and B = 11 then
>> syms C
>> (5*C - 11*C)/(5+11)
ans =
-(3*C)/8
>> 5*C/5 - 11*C/(5*(5+11))
ans =
(69*C)/80
Not even the same sign.
  1 Comment
Walter Roberson
Walter Roberson on 8 Feb 2019
Consider
(Ap*C - B*C)/(A + B) = Ap*C/A - B*C/(A*(A + B))
multiply both sides by A/C to get
(Ap*C - B*C)*A/((A + B)*C) = (Ap*C/A - B*C/(A*(A + B)))*A/C
On both sides, the C cancel in the top and bottom. On the right side th A cancel on the top and bottom
(Ap - B)*A/(A + B) = Ap - B/(A + B)
normalize the right side into a fraction
(Ap - B)*A/(A + B) = (A*Ap + Ap*B - B)/(A + B)
discard the denominator
(Ap - B) * A = A*Ap + Ap*B - B
expand
Ap*A - A*B = A*Ap + Ap*B - B
cancel Ap*A on both sides:
-A*B = Ap*B - B
factor right side:
-A*B = (Ap-1)*B
Ap is 1-A so (Ap-1)*B is (1-A-1)*B = -A*B which is the left hand side. Therefore the two sides are equal -- except for the cases where A=-B or A = 0 or C = 0, which would have to be examined more carefully to avoid multiplication or division by 0 giving false equations.

Sign in to comment.

Categories

Find more on Biomedical Imaging in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!