Need a better guess y0 for consistent initial conditions?
    4 views (last 30 days)
  
       Show older comments
    
Hello,
Im trying to solve a few DAE and algebraic equations using ode15s with  the help of a mass matrix. 
I'm unable to understand why I'm getting this error. 
What better guess for initial values should i be making? Could you please let me know if I've made a mistake?
Error using daeic12 (line 166)
Need a better guess y0 for consistent initial conditions.
Error in ode15s (line 310)
    [y,yp,f0,dfdy,nFE,nPD,Jfac] = daeic12(odeFcn,odeArgs,t,ICtype,Mt,y,yp0,f0,...
Error in three_machine_with_PIcontrolLoop2 (line 153)
[t2,x2] = ode15s(@TWOAXIS_three_machine_with_PIcontrolLoop2,tspan,x0,opt);%
Calling the function to solve ODEs
Please take a look at the program below.
This is the main program:
busdata = busdata3(); line = linedata3(); bus = busdata(:,1); type = busdata(:,2);
nbus = max(bus);
pv = find(type == 2 | type == 1); npv = length(pv);
pq = find(type == 3);             npq = length(pq);
Z = [  17.361,      0,         0,   17.361,       0,        0,      0,      0,       0,    1.04,         0,        0.716,       0.1903
            0,     16,         0,        0,       0,        0,     16,      0,       0,   1.028,    0.1584,         1.63,            0
            0,      0,    17.065,        0,       0,        0,      0,      0,  17.065,    1.05,    0.0753,         0.85,           -0
      17.3611,      0,         0,   39.448,  11.6841,  10.689,      0,      0,       0,  1.0302,   -0.0385,           -0,            0
            0,      0,         0,   11.684,  17.5252,       0, 6.0920,      0,       0,  1.0015,  -0.06952,        -1.25,         -0.5
            0,      0,         0,   10.689,        0, 16.1657,      0,      0,  5.7334,  1.0226,   -0.0644,         -0.9,         -0.3
            0,     16,         0,        0,   6.0920,       0, 35.556, 13.793,       0,  1.0331,   0.06236,            0,            0
            0,      0,         0,        0,        0,       0, 13.793,  23.47,   9.852,  1.0283,    0.0103,         -1.0,        -0.35
            0,      0,    17.065,        0,        0,  5.7334,      0,  9.852, 32.2461,  1.0510,    0.0302,           -0,            0 ];
Y = Z(1:9,1:9); Vt = Z(:,10); thv = Z(:,11); 
P_inj = Z(:,12);   Q_inj = Z(:,13);
PL = busdata(:,7); QL = busdata(:,8); 
PG = P_inj + PL;   QG = Q_inj + QL;
Sg = PG+1i*QG;
Sl = PL+1i*QL;
m = length(H);
%% calculating initial values
for i = 1:m
    IG(i) = (PG(i) - 1i*QG(i))./conj(Vt(i).*exp(1i*thv(i))); % net generated current at bus i
    IL(i) = (-PL(i) + 1i*QL(i))./conj(Vt(i).*exp(1i*thv(i))); % net load current at bus i
    I(i) = (P_inj(i) - 1i*Q_inj(i))./conj(Vt(i).*exp(1i*thv(i))); % net load current at bus i
    Delta(i)  = angle(Vt(i)*exp(1i*thv(i)) + (Rs(i) + 1i*Xq(i)*IG(i)));
    Id(i)   = real(IG(i)*exp(-1i*(Delta(i)-pi/2)));
    Iq(i)   = imag(IG(i)*exp(-1i*(Delta(i)-pi/2)));
    Vd(i)   = real(Vt(i)*exp(1i*thv(i))*exp(-1i*(Delta(i)-pi/2)));
    Vq(i)   = imag(Vt(i)*exp(1i*thv(i))*exp(-1i*(Delta(i)-pi/2)));
    Epd(i)  = (Xq(i) - Xpq(i))*Iq(i);
    Epq(i)  = Vq(i) + Rs(i)*Iq(i) + Xpd(i)*Id(i);
    Efd(i)  = Epq(i) + (Xd(i) - Xpd(i))*Id(i);
    VR(i)   = KE(i)*Efd(i);
    Rf(i)   = KF(i)*Efd(i)/TF(i);
    Vref(i) = Vt(i) + VR(i)/KA(i);
    Tm(i)   = Epd(i)*Id(i) + Epq(i)*Iq(i) + (Xpq(i) - Xpd(i))*Id(i)*Iq(i);
    Psv(i)  = Tm(i);
    PC(i)   = Psv(i);
    w(i)    = ws;
    F_i(i)  = 0;
    F_coi(i)   = 0;
end
%% constructing the mass matrix that is needed for solving the DAE
MM_machine = [1 1 1 1 1 1 1 1 1 1 1]'; % Mass matrix addition for 1 machine
MM_machine_alegraic = [0 0]'; %for algrebraic equations
MM_bus = [0 0]'; % Mass matrix addition for 1 bus -- one zero each of the...
                 % ... matrix for the two power balance equations
MM = MM_machine;  % Generates Mass Matrix for m-machine n-bus system
m=length(H);
if m > 1 for i = 2:m  MM = vertcat(MM,MM_machine);    end end
m=length(H);
if m > 1 for i = 1:m  MM = vertcat(MM,MM_machine_alegraic);  end end
if nbus > 1 for i = 1:nbus MM = vertcat(MM,MM_bus); end end
%% Calling the function file to solve the system of DAE
st = 0.0164; %step
tf = 60;   %final time
tspan = [ 0  tf ];  %time span
M = diag( MM ); % Mass matrix (forms a diagonal matrix)
opt = odeset( 'Mass',M ,'MaxStep',st); % ODE solver option
x0 =  [Epq  Epd Delta   w     Efd    Rf     VR     Tm     Psv    F_i   F_coi   Id     Iq     Vt'    thv' ]';   % Initial Values or S.S Values
[t2,x2] = ode15s(@TWOAXIS_three_machine_with_PIcontrolLoop2,tspan,x0,opt);% Calling the function to solve ODEs
and this is the DAE function file:
function xd = TWOAXIS_three_machine_with_PIcontrolLoop2(t,x) 
global tf Xd Xpd Xq Xpq ws Rs Tpd0 Tpq0 H TFW KE TE KF TF KA Vref TCH TA PC...
       RD Tsv Y Sl nbus type npv npq KP KI
xd = zeros(15*npv+2*npq,1);
%% State space variables:
Epq   = x(1:npv);           Epd   = x(npv+1:2*npv);         Del   = x(2*npv+1:3*npv);    w     = x(3*npv+1:4*npv);
Efd   = x(4*npv+1:5*npv);   Rf    = x(5*npv+1:6*npv);       VR    = x(6*npv+1:7*npv);    Tm    = x(7*npv+1:8*npv);
PSV   = x(8*npv+1:9*npv);   F_I   = x(9*npv+1:10*npv);      F_coi = x(10*npv+1:11*npv);  Id    = x(11*npv+1:12*npv);
Iq    = x(12*npv+1:13*npv); Vt    = x(13*npv+1:14*npv+npq); thv   = x(14*npv+npq+1:14*npv+npq+nbus);
Vref2 = 1;
PC2 = 1;
%% Center Of Inertia
for ii=1:npv
    w1(ii)=H(ii)*(w(ii)-ws);
end
w_coi = sum(w1)/sum(H);
%% DAE to be solved
for i=1:npv
    if type(i)==1 || type(i)==2                                                               %%%%%%
        xd(i,1)  = (-Epq(i)-((Xd(i)-Xpd(i))*Id(i))+Efd(i))/Tpd0(i);                                %
        xd(i,2)  = (-Epd(i)+((Xq(i)-Xpq(i))*Iq(i)))/Tpq0(i);                                       %
        xd(i,3)  = (w(i)-ws);                                                                      %
        xd(i,4)  = (Tm(i)-(Epd(i)*Id(i))-(Epq(i)*Iq(i))-((Xpq(i)-Xpd(i))*Id(i)*Iq(i))...
                   -TFW(i)-0.1*(w(i)-ws))*(ws/(2*H(i)));                                           %
        xd(i,5)  = (-(KE(i))*Efd(i)+VR(i))/TE(i);                                                % D
        xd(i,6)  = (-Rf(i)+KF(i)*Efd(i)/TF(i))/TF(i);                                            % A
        xd(i,7)  = (-VR(i)+KA(i)*Rf(i)-KA(i)*KF(i)*Efd(i)/TF(i)+KA(i)*(Vref2(i)-Vt(i)))/TA(i);   % E
        xd(i,8)  = (-Tm(i)+PSV(i))/TCH(i);                                                         %
        xd(i,9)  = (-PSV(i) + PC2(i) - (1/RD(i))*(w(i)/ws-1) - F_coi(i))/Tsv(i);                   %
        xd(i,10) = KI(i)*w_coi;                                                                    %
        xd(i,11) = (KP(i)*w_coi) + F_I(i);                                                    %%%%%%
        xd(i,12) = Epd(i)-Vt(i)*sin(Del(i)-thv(i))-Rs(i)*Id(i)+Xpq(i)*Iq(i);              % Algebraic
        xd(i,13) = Epq(i)-Vt(i)*cos(Del(i)-thv(i))-Rs(i)*Iq(i)-Xpd(i)*Id(i);              % Equations
    end
end
%% power balance equations (also Algebraic Equations)
for i =1:nbus
    P(i,1) = 0;
        Q(i,1) = 0;
    if type(i)==1
        for k=1:nbus
        P(i,1) = P(i,1)+Vt(i)*Vt(k)*abs(Y(i,k))*cos(thv(i)-thv(k)-angle(Y(i,k)));
        Q(i,1) = Q(i,1)+Vt(i)*Vt(k)*abs(Y(i,k))*sin(thv(i)-thv(k)-angle(Y(i,k)));
        end
    xd(i,14) = Id(i)*Vt(i)*sin(Del(i)-thv(i))+Iq(i)*Vt(i)*cos(Del(i)-thv(i))-real(Sl(i))-P(i);
    xd(i,15) = Id(i)*Vt(i)*cos(Del(i)-thv(i))-Iq(i)*Vt(i)*sin(Del(i)-thv(i))-imag(Sl(i))-Q(i);
    end
    if type(i)==2
        for k=1:nbus
        P(i,1) = P(i,1)+Vt(i)*Vt(k)*abs(Y(i,k))*cos(thv(i)-thv(k)-angle(Y(i,k)));
        Q(i,1) = Q(i,1)+Vt(i)*Vt(k)*abs(Y(i,k))*sin(thv(i)-thv(k)-angle(Y(i,k)));
        end
    xd(i,14) = Id(i)*Vt(i)*sin(Del(i)-thv(i))+Iq(i)*Vt(i)*cos(Del(i)-thv(i))-real(Sl(i))-P(i);
    xd(i,15) = Id(i)*Vt(i)*cos(Del(i)-thv(i))-Iq(i)*Vt(i)*sin(Del(i)-thv(i))-imag(Sl(i))-Q(i);
    end
    if type(i)==3
        for k=1:nbus
        P(i,1) = P(i,1)+Vt(i)*Vt(k)*abs(Y(i,k))*cos(thv(i)-thv(k)-angle(Y(i,k)));
        Q(i,1) = Q(i,1)+Vt(i)*Vt(k)*abs(Y(i,k))*sin(thv(i)-thv(k)-angle(Y(i,k)));
        end
    xd(i,14) = real(Sl(i))+P(i);
    xd(i,15) = imag(Sl(i))+Q(i);
    end
end
1 Comment
Answers (0)
See Also
Categories
				Find more on Calculus in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
