Vectors must be the same length.

2 views (last 30 days)
Mariam Gasra
Mariam Gasra on 1 May 2019
Commented: KSSV on 16 Oct 2020
lamda=0.2;
mu=1-lamda;
P1=mu^2/(mu+lamda)^2;
P2=2*lamda*mu/(mu+lamda)^2;
P3=lamda^2/(mu+lamda)^2;
display(P1);
display(P2);
display(P3);
t = 1:5:100 ;
P11 = zeros(size(t)) ;
P22 = zeros(size(t)) ;
P33 = zeros(size(t)) ;
for i = 1:length(t)
P11(t)=(lamda^2/(lamda+mu)^2)*exp(-2*(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
P22(t)=((2*mu*lamda)/(lamda+mu)^2)+(((2*lamda*(lamda-mu))/(lamda+mu)^2)*exp(-(mu+lamda)*t(i)))-2*((lamda^2/lamda+mu)^2)*exp(-2*(mu+lamda)*t(i));
P33(t)=((lamda^2/(lamda+mu)^2)*exp(-2*(mu+lamda)*t(i)))-(2*lamda^2/(lamda+mu)^2)*exp(-(mu+lamda)*t(i))+lamda^2/(lamda+mu)^2;
end
A=P11;
B=P33;
C=P22;
plot(A,t,B,t,C,t)
legend({'A','B','C'})
how can i solve this problem? Vectors must be the same length.??
  1 Comment
alex brown
alex brown on 1 May 2019
Do you need something like this figure?
lamda=0.2;
mu=1-lamda;
P1=mu^2/(mu+lamda)^2;
P2=2*lamda*mu/(mu+lamda)^2;
P3=lamda^2/(mu+lamda)^2;
display(P1);
display(P2);
display(P3);
t = 1:5:100 ;
P11 = zeros(size(t)) ;
P22 = zeros(size(t)) ;
P33 = zeros(size(t)) ;
for i = 1:length(t)
P11(t)=(lamda^2/(lamda+mu)^2)*exp(-2*(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
P22(t)=((2*mu*lamda)/(lamda+mu)^2)+(((2*lamda*(lamda-mu))/(lamda+mu)^2)*exp(-(mu+lamda)*t(i)))-2*((lamda^2/lamda+mu)^2)*exp(-2*(mu+lamda)*t(i));
P33(t)=((lamda^2/(lamda+mu)^2)*exp(-2*(mu+lamda)*t(i)))-(2*lamda^2/(lamda+mu)^2)*exp(-(mu+lamda)*t(i))+lamda^2/(lamda+mu)^2;
end
A=P11;
B=P33;
C=P22;
plot(A)
hold on
plot(B)
hold on
plot(C)
legend({'A','B','C'})

Sign in to comment.

Answers (1)

KSSV
KSSV on 1 May 2019
YOu need to check the loop part.....
lamda=0.2;
mu=1-lamda;
P1=mu^2/(mu+lamda)^2;
P2=2*lamda*mu/(mu+lamda)^2;
P3=lamda^2/(mu+lamda)^2;
display(P1);
display(P2);
display(P3);
t = 1:5:100 ;
P11 = zeros(size(t)) ;
P22 = zeros(size(t)) ;
P33 = zeros(size(t)) ;
for i = 1:length(t)
P11(i,:)=(lamda^2/(lamda+mu)^2)*exp(-2*(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
P22(i,:)=((2*mu*lamda)/(lamda+mu)^2)+(((2*lamda*(lamda-mu))/(lamda+mu)^2)*exp(-(mu+lamda)*t(i)))-2*((lamda^2/lamda+mu)^2)*exp(-2*(mu+lamda)*t(i));
P33(i,:)=((lamda^2/(lamda+mu)^2)*exp(-2*(mu+lamda)*t(i)))-(2*lamda^2/(lamda+mu)^2)*exp(-(mu+lamda)*t(i))+lamda^2/(lamda+mu)^2;
end
A=P11;
B=P33;
C=P22;
plot(A,t,B,t,C,t)
legend({'A','B','C'})
  2 Comments
KSSV
KSSV on 16 Oct 2020
It is a loop indexing, where loop starts from 1 till length(t), this will ensure the arrays formed will be of dimension of t.

Sign in to comment.

Categories

Find more on Operating on Diagonal Matrices in Help Center and File Exchange

Tags

Products


Release

R2015b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!