How to calculate determinant of matrices without loop?
11 views (last 30 days)
Show older comments
Hadi Ghahremannezhad
on 8 Oct 2019
Commented: Hadi Ghahremannezhad
on 10 Oct 2019
I am new to Matlab and this might seem very easy.
I have 2 matrices:
a = [1 1 1; 2 2 2 ; 3 3 3 ; 4 4 4 ; 5 5 5];
b = [4 4 4; 3 2 4 ; 1 5 7 ; 4 3 8 ; 2 4 7];
I wanted to calculate the determinant of each row of the two matrices added by a row of ones (a 3*3 matrix), and put all the determinants in another array. For example, first determinant (d(1)) would be from this matrix:
1 1 1
4 4 4
1 1 1
and the second one (d(2)) would be from this matrix:
2 2 2
3 2 4
1 1 1
and so on...
When I try this:
m = size(a,1);
ons = ones(m,3);
d = det([a(:,:) ; b(:,:) ; ons(:,:)]);
I get this error:
Error using det
Matrix must be square.
How can I calculate all the determinants at once without using loop?
7 Comments
Rik
on 10 Oct 2019
There are 16 orders of magnitude between input and output. That is fairly close to eps, so this could be a float rounding error (and it is).
Accepted Answer
Bruno Luong
on 10 Oct 2019
a(:,1).*b(:,2)-a(:,2).*b(:,1)-a(:,1).*b(:,3)+a(:,3).*b(:,1)+a(:,2).*b(:,3)-a(:,3).*b(:,2)
2 Comments
Bruno Luong
on 10 Oct 2019
Edited: Bruno Luong
on 10 Oct 2019
Some timing
a=rand(1e6,3);
b=rand(1e6,3);
tic
d=arrayfun(@(x)det([a(x,:);b(x,:);ones(1,3)]),(1:length(a))');
toc % 5.066323 seconds.
tic
A = reshape(a.',1,3,[]);
B = reshape(b.',1,3,[]);
ABC = [A; B];
ABC(3,:,:) = 1;
d = zeros(size(a,1),1);
for k=1:size(a,1)
d(k) = det(ABC(:,:,k));
end
toc % Elapsed time is 1.533522 seconds.
tic
d = a(:,1).*b(:,2)-a(:,2).*b(:,1)-a(:,1).*b(:,3)+a(:,3).*b(:,1)+a(:,2).*b(:,3)-a(:,3).*b(:,2);
toc % Elapsed time is 0.060121 seconds.
I keep writing since day one that ARRAYFUN is mostly useless when speed is important.
More Answers (2)
David Hill
on 9 Oct 2019
d=arrayfun(@(x)det([a(x,:);b(x,:);ones(1,3)]),1:length(a));
3 Comments
Bruno Luong
on 10 Oct 2019
You have accepted the worse answer in term of runing time, see the tic/toc I made below
Steven Lord
on 9 Oct 2019
This line of code:
d = det([a(:,:) ; b(:,:) ; ons(:,:)]);
Stacks all of a on top of all of b, and stacks that on top of all of ons. It then tries to take the determinant of that array. Let's see the matrix you created.
d = [a(:,:) ; b(:,:) ; ons(:,:)]
d =
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
4 4 4
3 2 4
1 5 7
4 3 8
2 4 7
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
The easiest way to accomplish what you want is a for loop that iterates through the rows of the a and b matrices. It's hard to give an example of the technique on your data that doesn't just give you the solution (which I'd prefer not to do, since this sounds like a homework assignment.) So I'll just point to the array indexing documentation. You want to access all of one of the rows of a (and all of the same row of b) and use that accessed data to create the d matrix for that iteration of the for loop. Each iteration will have a different d.
3 Comments
Steven Lord
on 9 Oct 2019
Why? Because that's a condition of your assignment or because you have heard that loops are slow in MATLAB? If the latter, that's become less and less accurate (when the loop is written well) as time has progressed and MATLAB has improved.
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!