How to calculate R-square using robust linear regression function
4 views (last 30 days)
Show older comments
In the linear regression function (regress), one may get the R^2 value directly from one of the 'stats' variable in [b, bint, r, rint, stats] = regress(y,X) function
I want to do a robust linear regression with [b,stats] = robustfit(X,Y)
However, I can't find in the help panel how to assess R^2 from the output variables of the 'robustfit' function.
Any help will be very welcome
JA
0 Comments
Answers (2)
Matt Fig
on 29 Nov 2012
[brob, rob_stats] = robustfit(x,y);
rsquare = corr(y,brob(1)+brob(2)*x)^2
0 Comments
Christian
on 19 May 2015
Hi there, although this thread is really old, I'm gonna give it a shot :-) I encountered the same problem and Matt's formula seems to solve it beautifully when regressing against only 1 independent variable. However, my x contains 4 factors. How would you go about calculating R-squared in that case? I tried the following, but it doesn't seem to work:
B_Rsqrd(1,j) = corr(Y,b(1)+b(2)*X(:,1)+b(3)*X(:,2)+b(4)*X(:,3)+b(5)*X(:,4))^2;
Can someone help me out here?
Any help is much appreciated!
Christian
0 Comments
See Also
Categories
Find more on Linear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!