ODE not evaluating correctly with time dependent parameter
2 views (last 30 days)
Show older comments
I am trying to pass a time dependent constant to my ode solver however it is not yielding the right values.
Eo = 0.4;
Ei = 0;
v = -0.1;
a = 0.5;
F = 96485.33289;
R = 8.314;
T = 293.15;
tfinal = -1.5/v;
tstep = 0.1;
tspan = 0:tstep:tfinal;
En = Ei + v * tspan;
kmax = 225000;
k0 = kmax * exp(-8);
kred = k0 .* exp(((-a * F)/(R * T)) * (En - Eo));
kox = k0 .* exp((((1-a) * F)/(R * T)) * (En - Eo));
IC = 1;
[A, B] = ode15s(@(t, y) myODE(t, y, kred, kox, En), tspan, IC);
function dydt = myODE(t, y, kred, kox, En)
kred = interp1(En, kred, t);
kox = interp1(En, kox, t);
dydt = -kred .* y + kox;
end
A and B are being solved as singular values (0 and 1 respectively). The arrays of kred and kox are yielding the right values. What is confusing me is that I have a similar test code, which returns an array for the values A and B.
v = 3;
tfinal = 15/v;
tStep = 1;
tspan = 0:tStep:tfinal;
x = tspan * v;
xi = 0;
xn = xi + v*tspan;
s = 0.5 * exp(xn - 3);
u = -0.5 * exp(xn - 3);
IC = 1;
[A, B] = ode15s(@(t, y) myODE(t, y, s, u, xn), tspan, IC);
function dydt = myODE(t, y, s, u, xn)
s = interp1(xn, s, t);
u = interp1(xn, u, t);
dydt = -s .*y + u;
end
For this code, A and B are returning the correct values and I don't see any striking differences in how the function set up is besides the actual equations of the parameters. Any help is appreciated.
6 Comments
Alan Stevens
on 24 Jul 2020
Your En values are all negative, but you are passing positive values of t to the interp function. Are you sure En should be negative.
The corresponding terms, xn, in your other code are positive.
Accepted Answer
Star Strider
on 24 Jul 2020
Create ‘kred’ and ‘kox’ as anonymous functions, and it runs:
Eo = 0.4;
Ei = 0;
v = -0.1;
a = 0.5;
F = 96485.33289;
R = 8.314;
T = 293.15;
tfinal = -1.5/v;
tstep = 0.1;
tspan = 0:tstep:tfinal;
En = Ei + v * tspan;
kmax = 225000;
k0 = kmax * exp(-8);
Enfcn = @(t) Ei + v * t;
kredfcn = @(t) k0 .* exp(((-a * F)/(R * T)) * (Enfcn(t) - Eo));
koxfcn = @(t) k0 .* exp((((1-a) * F)/(R * T)) * (Enfcn(t) - Eo));
IC = 1;
[A, B] = ode15s(@(t, y) myODE(t, y), tspan, IC);
function dydt = myODE(t, y)
kred = kredfcn(t);
kox = koxfcn(t);
dydt = -kred .* y + kox;
end
figure
plot(A,B)
grid
You must determine if it produces the correct result.
5 Comments
Star Strider
on 25 Jul 2020
As always, my pleasure!
(My apologies for not seeing tthe obvious relationship between ‘t’ and the functions earllier.)
It should work the same way for a system of differential equations. (It obviously depends on the differential equations and the functions, if they are not the same as they are here.)
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!