Fmincon objective and nlcon shared simulink parameters
3 views (last 30 days)
Show older comments
I'm trying to minimize a function of my vector X which is the input of my simulink model.
Right now i'm doing:
X=fmincon(@(X)objective,x0,A,B,Aeq,Beq,@(X)nonlcon,options)
function [f,gradf]=objective(X,simulation_param,Tfinal)
T=(0:1:Tfinal)';
TIN=[T X]
[~,~,yout]=sim('sim_model',[0 Tfinal],opt ,TIN);
f=some_fun_of(yout)
gradf=some_other_fun_of(yout)
end
function [G,P,gradG,gradP]=nonlcon(X,simulation_param,Tfinal)
T=(0:1:Tfinal)';
TIN=[T X]
[~,~,yout]=sim('sim_model',[0 Tfinal],opt ,TIN);
G=constr_fun_of(yout)
gradG=some_other_constr_fun_of(yout)
P=...
gradP=...
end
Since the simulation is the same, i would like fmincon to call it only once and not twice (once for objective fun and once for nonlcon fun).
I saw this link: https://www.mathworks.com/help/optim/ug/objective-and-nonlinear-constraints-in-the-same-function.html
but i dont know how to readapt the code if i have a Simulink simulation.
0 Comments
Accepted Answer
Matt J
on 31 Oct 2020
Edited: Matt J
on 31 Oct 2020
function [x,f,eflag,outpt] = runobjconstr(x0,opts)
if nargin == 1 % No options supplied
opts = [];
end
simulation_param=...,
Tfinal=...,
xLast = []; % Last place update_yout was called
yout=[];
fun = @objfun; % The objective function, nested below
cfun = @constr; % The constraint function, nested below
% Call fmincon
[x,f,eflag,outpt] = fmincon(fun,x0,[],[],[],[],[],[],cfun,opts);
function [f,gradf] = objfun(x)
if ~isequal(x,xLast) % Check if computation is necessary
update_yout(x);
xLast = x;
end
% Now compute objective function
f=some_fun_of(yout)
gradf=some_other_fun_of(yout)
end
function [G,P,gradG,gradP] = constr(x)
if ~isequal(x,xLast) % Check if computation is necessary
update_yout(x);
xLast = x;
end
G=constr_fun_of(yout)
gradG=some_other_constr_fun_of(yout)
P=...,
gradP=...,
end
function update_yout(X)
T=(0:1:Tfinal)';
TIN=[T X]
[~,~,yout]=sim('sim_model',[0 Tfinal],opt ,TIN);
end
end
6 Comments
More Answers (0)
See Also
Categories
Find more on Surrogate Optimization in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!