How can i find trend of sound wave from hitting different level of water?

2 views (last 30 days)
I record sound of hitting diffenent percentage level of water in bottle in to file .wav (30% to 100% of water Increase in 5% increments and convert in to file name 7 to 21, 0% to 25% there are a few mistake so this time i didn't consider.)
then i use prony's method to analyze and plot relationship between frequency and amplitude but i dont know what value i sholud plot to know the trend.
This is my code
clear;
close;
h{21}=16; w{21}=2.08; per{21}=100; %h=height of water in cm, w=weigth 0f water in kg
h{20}=15.2; w{20}=1.98; per{20}=95;
h{19}=14.4; w{19}=1.88; per{19}=90;
h{18}=13.6; w{18}=1.78; per{18}=85;
h{17}=12.8; w{17}=1.68; per{17}=80;
h{16}=12; w{16}=1.58; per{16}=75;
h{15}=11.2; w{15}=1.48; per{15}=70;
h{14}=10.3; w{14}=1.38; per{14}=65;
h{13}=9.4; w{13}=1.28; per{13}=60;
h{12}=8.6; w{12}=1.18; per{12}=55;
h{11}=7.9; w{11}=1.09; per{11}=50;
h{10}=7.3; w{10}=1; per{10}=45;
h{9}=6.3; w{9}=0.9; per{9}=40;
h{8}=5.5; w{8}=0.81; per{8}=35;
h{7}=4.8; w{7}=0.72; per{7}=30;
% h{6}=4; w{6}=0.62; per{6}=25;
% h{5}=3.3; w{5}=0.52; per{5}=20;
% h{4}=2.5; w{4}=0.44; per{4}=15;
% h{3}=1.8; w{3}=0.35; per{3}=10;
% h{2}=0.8; w{2}=0.24; per{2}=5;
% h{1}=0; w{1}=0.14; per{1}=0;
H=cell2mat(h);
W=cell2mat(w);
K=cell2mat(k);
PER=cell2mat(per);
r=7.15; %raduis of bottle in cm
%First loop
for i=7:1:21
AA=importdata(strcat(num2str(i),'.mat'))
data=AA.data;
fs=AA.fs;
p=20; %Number of sampling
ts=1/fs;
method=1; %LS method
time=length(data)*ts;
t=0:ts:time;
t(end)=[];
[Amp{i},alfa{i},freq{i},theta{i}]=polynomial_method(data,p,ts,'LS');
v{i}=pi*(r^2)*h{i};
end
V=cell2mat(v);
AMP=cell2mat(Amp);
figure; %This graph is to show that the scales of loadcell we calibrate are linear.
yyaxis left
plot(W,PER,'-o')
grid on
xlabel('Weight (Kg)')
ylabel('Percentage (%)')
yyaxis right
plot(W,V,'-o')
grid on
xlabel('Weight (Kg)')
ylabel('Volume (milliliters)')
figure;
subplot(3,1,1)
plot(freq{21},Amp{21},'o')
xlabel('Freq')
ylabel('Amp')
title('100 percent of water')
subplot(3,1,2)
plot(freq{15},Amp{15},'o')
xlabel('Freq')
ylabel('Amp')
title('70 percent of water')
subplot(3,1,3)
plot(freq{7},Amp{7},'o')
xlabel('Freq')
ylabel('Amp')
title('30 percent of water')
and code for the function polynomial_method
function [Amp,alfa,freq,theta] = polynomial_method (x,p,Ts,method)
CLASSIC=0;
LS=1;
TLS=2;
N=length(x);
if strcmpi(method,'classic')
if N ~=2*p
disp('ERROR: length of x must be 2*p samples in classical method.');
Amp=[];
alfa=[];
freq=[];
theta=[];
return;
else
solve_method=CLASSIC;
end
elseif strcmpi(method,'LS')
solve_method=LS;
elseif strcmpi(method,'TLS')
solve_method=TLS;
else
disp('ERROR: error in parsing the argument "method".');
Amp=[];
alfa=[];
freq=[];
theta=[];
return;
end
%step1
T=toeplitz(x(p:N-1),x(p:-1:1));
switch solve_method
case {CLASSIC,LS}
a=-T\x(p+1:N);
case TLS
a=tls(T,-x(p+1:N));
end
%check for indeterminate forms
indeterminate_form=sum(isnan(a) | isinf(a));
if(indeterminate_form)
Amp=[]; alfa=[]; freq=[]; theta=[];
return;
end
%step2
c=transpose([1;a]);
r=roots(c);
alfa=log(abs(r))/Ts;
freq=atan2(imag(r),real(r))/(2*pi*Ts);
alfa(isinf(alfa))=realmax*sign(alfa(isinf(alfa)));
%step3
switch solve_method
case CLASSIC
len_vandermonde=p;
case LS
len_vandermonde=N
case TLS
len_vandermonde=N
end
z=zeros(len_vandermonde,p);
for i=1:length(r)
z(:,i)=transpose(r(i).^(0:len_vandermonde-1));
end
rz=real(z);
iz=imag(z);
rz(isinf(rz))=realmax*sign(rz(isinf(rz)));
iz(isinf(iz))=realmax*sign(iz(isinf(iz)));
z=rz+1i*iz;
switch solve_method
case {CLASSIC,LS}
h=z\x(1:len_vandermonde);
case TLS
indeterminate_form=sum(sum(isnan(z)|isinf(z)));
if (indeterminate_form)
Amp =[]; alfa =[]; freq =[], theta =[];
return;
else
h = tls(z,x(len_vandermonde))
end
end
Amp=abs(h);
theta=atan2(imag(h),real(h));
Or another way to analyze the sound??
Thank you for your help.

Answers (0)

Categories

Find more on Audio I/O and Waveform Generation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!