Как вырезать одну поверхность из другой? / How to cut out one surface from another?
4 views (last 30 days)
Show older comments
например у меня есть поверхность круга
[t,r] = meshgrid(linspace(0,2*pi,50),linspace(0,1,50));
[x,y] = pol2cart(t,r);
z=0*x*y;
zcos=cos(z);
surf(x,y,z)
и поверхноть квадрата
[x1,y1] = meshgrid(-2:0.1:2,-2:0.1:2);
z1=0*x1*y1;
surf(x1,y1,z1)
я хочу получить квадрат с дырой внутри от круга
(так же если возможно объясните как получить
поверхность круга в виде нормальной декартовой
сетки, а не в виде полярной)
1 Comment
Adam Danz
on 17 Nov 2020
English translation for future visitors
I have a circle surface, for example
[t, r] = meshgrid (linspace (0.2 * pi, 50), linspace (0.1.50));
[x, y] = pol2cart (t, r);
z = 0 * x * y;
zcos = cos (z);
surf (x, y, z)
and the surface of a square
[x1, y1] = meshgrid (-2: 0.1: 2, -2: 0.1: 2);
z1 = 0 * x1 * y1;
surf (x1, y1, z1)
i want to create a square with a hole inside from the circle
(also, if possible, explain how to get
the surface of a circle as a normal Cartesian
grid, not polar)
Accepted Answer
Adam Danz
on 17 Nov 2020
Edited: Adam Danz
on 17 Nov 2020
Привет Павел
> я хочу получить квадрат с дырой внутри от круга
> i want to create a square with a hole inside from the circle
Since your surfaces are flat and centered on (0,0) you just need to use the radius of the circle to subtract the circle from the square surface.
[x1,y1] = meshgrid(-2:0.1:2,-2:0.1:2);
z1=0*x1*y1;
radius = 2;
circIdx = hypot(x1,y1) < radius;
x1(circIdx) = NaN;
y1(circIdx) = NaN;
figure()
surf(x1,y1,z1)
axis equal
> так же если возможно объясните как получить поверхность круга в виде нормальной декартовой сетки, а не в виде полярной
> also, if possible, explain how to get the surface of a circle as a normal Cartesian grid, not polar
The circular surface in your question is already in Cartesian coordinates. pol2cart converts polar coordinates to Cartesian.
0 Comments
More Answers (0)
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!