differential evalution code Error using * Inner matrix dimensions must agree.
1 view (last 30 days)
Show older comments
Error in @(x)sum((minus((x(1)),V)*sin(2.*pi.*x(2).*t+x(3)).^2))/n Error in noise_de (line 56) pop(i).Cost=CostFunction(pop(i).Position);
- clear all; close all; clc
- fs=200; %sampling freq.
- dt =1/fs;
- n=fs/3 %number of samples/cycle
- m=3 %no. of cycles
- fi=50;
- t = dt*(0:400); %data window
- ww=wgn(201,1,-40);
- size(transpose(ww))
- t =dt*(0:200);
- y=sin(2*pi*fi*t + 0.3);
- for j=0:200/(n*m)
- t =dt*(j*m*n:(j+1)*m*n);
- x=sin(2*pi*fi*t + 0.3)+transpose(wgn(1+n*m,1,-40));
- V=x
- tmax=0.01;
- lastreported=0;
- %% Problem Definition
- t_est=[];
- f_est=[];
- dt=1/fs;
- i_max=tmax*fs
- for ii=0:i_max
- if(ii/i_max*100-lastreported>=1)
- lastreported=ii/i_max*100;
- fprintf('%5.2f%%\n',lastreported);
- end
- t=(ii:ii+n-1)*dt;
- CostFunction=@(x) sum((minus((x(1)),V)*sin(2*pi.*x(2).*t+x(3)).^2))/n; % Cost Function
- nVar=3; % Number of Decision Variables
- VarSize=[1 nVar]; % Decision Variables Matrix Size
- VarMin=[0,48,0]; % Lower Bound of Decision Variables
- VarMax=[1000,52,2*pi]; % Upper Bound of Decision Variables
- %% DE Parameters
- MaxIt=200; % Maximum Number of Iterations
- nPop=50; % Population Size
- beta=0.5; % Scaling Factor
- pCR=0.2; % Crossover Probability
- minCost=1e-10;
- %% Initialization
- empty_individual.Position=[];
- empty_individual.Cost=[];
- BestSol.Cost=inf;
- pop=repmat(empty_individual,nPop,1);
- for i=1:nPop
- pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
- pop(i).Cost=CostFunction(pop(i).Position);
- if pop(i).Cost<BestSol.Cost
- BestSol=pop(i);
- end
- end
- BestCost=zeros(MaxIt,1);
- %% DE Main Loop
- for it=1:MaxIt
- for i=1:nPop
- x=pop(i).Position;
- A=randperm(nPop);
- A(A==i)=[];
- a=A(1);
- b=A(2);
- c=A(3);
- % Mutation
- %beta=unifrnd(beta_min,beta_max);
- y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
- y = max(y, VarMin);
- y = min(y, VarMax);
- % Crossover
- z=zeros(size(x));
- j0=randi([1 numel(x)]);
- for j=1:numel(x)
- if j==j0 || rand<=pCR
- z(j)=y(j);
- else
- z(j)=x(j);
- end
- end
- NewSol.Position=z;
- NewSol.Cost=CostFunction(NewSol.Position);
- if NewSol.Cost<pop(i).Cost
- pop(i)=NewSol;
- if pop(i).Cost<BestSol.Cost
- BestSol=pop(i);
- end
- end
- end
- % Update Best Cost
- BestCost(it)=BestSol.Cost;
- % Show Iteration Information
- %disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
- if(minCost>BestSol.Cost)
- break;
- ErrorTarget=0.00000001;
- EvalMax=10000*n;
- end
- end
- %% Show Results
- % disp(['Iteration ' num2str(ii) ': Best Cost = ' num2str(BestSol.Position(2))]);
- t_est=[t_est;(ii)*dt];
- f_est=[f_est;BestSol.Position(2)];
- if(minCost>BestSol.Cost)
- %break;
- ErrorTarget=0.00000001;
- EvalMax=10000*n;
- end
- end
- end
- t_est
- f_est
- plot (t_est,f_est,'red')
- hold on
- xlabel('time')
- ylabel('frequency')
- title('DE white noise ')
- c=vpa(rms(fi(t_est)-f_est))
- plot (t_est,fi*ones(size(t_est)))
- hold off
0 Comments
Accepted Answer
Stephan
on 2 Dec 2020
@(x)sum((minus((x(1)),V).*sin(2.*pi.*x(2).*t+x(3)).^2))/n
% ^
% |
% ------- Elementwise multiplication
More Answers (0)
See Also
Categories
Find more on Calendar in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!