Why can't I use the mae error with the Levenber-Marquardt algorithm?
2 views (last 30 days)
Show older comments
Giuseppe D'Amico
on 4 Dec 2020
Commented: Giuseppe D'Amico
on 4 Dec 2020
Hi, I'm training a neural network using a script I got using the matlab tool on neural networks.In particular I am using a timedelaynetwork for the prediction of a historical power series, I modified the network by inserting two hidden layers, one with a logsig activation function and one with a tansig activation function.I am using is the levenberg-marquardt, inserting the mae as a performance function, the message in the figure appears in the command window.
Why can't I use the mae with the trainlm?
Also, I would like to ask you, in your opinion is the architecture and type of network I am using to make the power prediction correct? or could it be improved in some way?
0 Comments
Accepted Answer
Matt J
on 4 Dec 2020
Edited: Matt J
on 4 Dec 2020
Why can't I use the mae with the trainlm?
Just a guess, but Levenberg-Marquardt presumes that a Jacobian can be computed at the optimum parameter selection. In the ideal scenario where the optimal MAE=0, the Jacobian would fail to exist, due to the non-differentiability of at .
More Answers (0)
See Also
Categories
Find more on Define Shallow Neural Network Architectures in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!