Convert Image to Non Overlapping Blocks

8 views (last 30 days)
Asem Hassan
Asem Hassan on 26 Apr 2013
Commented: Image Analyst on 17 Feb 2014
I am biginner in MATLAB programming
I have gray scale image, I need code to divided it to non overlapping blocks each block have size[1,3] and call each block individually
thank you
  2 Comments
daryoush
daryoush on 17 Feb 2014
Hi you can use this command : mat2cell(f,[x1 x2 x3 ...],[y1 y2 y3 ...]) that f is your original matrix. x1 is the height of first cell, x2 is the height of second cell and so on. y1 is the width of first cell,y2 is the width of second cell and so on
Image Analyst
Image Analyst on 17 Feb 2014
Yes, that's one of the two ways that the code in my answer (pulled from the FAQ) does it. The other way is just by simple indexing.

Sign in to comment.

Answers (2)

Walter Roberson
Walter Roberson on 26 Apr 2013
Did you try searching the forum for
convert image blocks

Image Analyst
Image Analyst on 26 Apr 2013
This demo illustrates 2 different ways:
% Demo to divide an image up into blocks (non-overlapping tiles).
% The first way to divide an image up into blocks is by using mat2cell().
% In this demo, I demonstrate that with a color image.
% Another way to split the image up into blocks is to use indexing.
% In this demo, I demonstrate that method with a grayscale image.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
workspace; % Make sure the workspace panel is showing.
fontSize = 20;
% Read in a standard MATLAB color demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'peppers.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
% Didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
% Read the image from disk.
rgbImage = imread(fullFileName);
% Test code if you want to try it with a gray scale image.
% Uncomment line below if you want to see how it works with a gray scale image.
% rgbImage = rgb2gray(rgbImage);
% Display image full screen.
imshow(rgbImage);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
drawnow;
% Get the dimensions of the image. numberOfColorBands should be = 3.
[rows columns numberOfColorBands] = size(rgbImage)
%==========================================================================
% The first way to divide an image up into blocks is by using mat2cell().
blockSizeR = 150; % Rows in block.
blockSizeC = 100; % Columns in block.
% Figure out the size of each block in rows.
% Most will be blockSizeR but there may be a remainder amount of less than that.
wholeBlockRows = floor(rows / blockSizeR);
blockVectorR = [blockSizeR * ones(1, wholeBlockRows), rem(rows, blockSizeR)];
% Figure out the size of each block in columns.
wholeBlockCols = floor(columns / blockSizeC);
blockVectorC = [blockSizeC * ones(1, wholeBlockCols), rem(columns, blockSizeC)];
% Create the cell array, ca.
% Each cell (except for the remainder cells at the end of the image)
% in the array contains a blockSizeR by blockSizeC by 3 color array.
% This line is where the image is actually divided up into blocks.
if numberOfColorBands > 1
% It's a color image.
ca = mat2cell(rgbImage, blockVectorR, blockVectorC, numberOfColorBands);
else
ca = mat2cell(rgbImage, blockVectorR, blockVectorC);
end
% Now display all the blocks.
plotIndex = 1;
numPlotsR = size(ca, 1);
numPlotsC = size(ca, 2);
for r = 1 : numPlotsR
for c = 1 : numPlotsC
fprintf('plotindex = %d, c=%d, r=%d\n', plotIndex, c, r);
% Specify the location for display of the image.
subplot(numPlotsR, numPlotsC, plotIndex);
% Extract the numerical array out of the cell
% just for tutorial purposes.
rgbBlock = ca{r,c};
imshow(rgbBlock); % Could call imshow(ca{r,c}) if you wanted to.
[rowsB columnsB numberOfColorBandsB] = size(rgbBlock);
% Make the caption the block number.
caption = sprintf('Block #%d of %d\n%d rows by %d columns', ...
plotIndex, numPlotsR*numPlotsC, rowsB, columnsB);
title(caption);
drawnow;
% Increment the subplot to the next location.
plotIndex = plotIndex + 1;
end
end
% Display the original image in the upper left.
subplot(4, 6, 1);
imshow(rgbImage);
title('Original Image');
% Inform user of next stage where we process a gray scale image.
promptMessage = sprintf('Now I will do the same for a gray scale image.');
titleBarCaption = 'Continue?';
button = questdlg(promptMessage, titleBarCaption, 'OK', 'Cancel', 'OK');
if strcmpi(button, 'Cancel')
return;
end
%==============================================================================
% Another way to split the image up into blocks is to use indexing.
% Read in a standard MATLAB gray scale demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'cameraman.tif';
fullFileName = fullfile(folder, baseFileName);
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
% Didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image. numberOfColorBands should be = 1.
[rows columns numberOfColorBands] = size(grayImage);
% Display the original gray scale image.
figure;
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Divide the image up into 4 blocks.
% Let's assume we know the block size and that all blocks will be the same size.
blockSizeR = 128; % Rows in block.
blockSizeC = 128; % Columns in block.
% Figure out the size of each block.
wholeBlockRows = floor(rows / blockSizeR);
wholeBlockCols = floor(columns / blockSizeC);
% Preallocate a 3D image
image3d = zeros(wholeBlockRows, wholeBlockCols, 3);
% Now scan though, getting each block and putting it as a slice of a 3D array.
sliceNumber = 1;
for row = 1 : blockSizeR : rows
for col = 1 : blockSizeC : columns
% Let's be a little explicit here in our variables
% to make it easier to see what's going on.
% Determine starting and ending rows.
row1 = row;
row2 = row1 + blockSizeR - 1;
row2 = min(rows, row2); % Don't let it go outside the image.
% Determine starting and ending columns.
col1 = col;
col2 = col1 + blockSizeC - 1;
col2 = min(columns, col2); % Don't let it go outside the image.
% Extract out the block into a single subimage.
oneBlock = grayImage(row1:row2, col1:col2);
% Specify the location for display of the image.
subplot(2, 2, sliceNumber);
imshow(oneBlock);
% Make the caption the block number.
caption = sprintf('Block #%d of 4', sliceNumber);
title(caption, 'FontSize', fontSize);
drawnow;
% Assign this slice to the image we just extracted.
if (row2-row1+1) == blockSizeR && (col2-col1+1) == blockSizeC
% Then the block size is the tile size,
% so add a slice to our 3D image stack.
image3D(:, :, sliceNumber) = oneBlock;
else
newTileSize = [(row2-row1+1), (col2-col1+1)];
warningMessage = sprintf('Warning: this block size of %d rows and %d columns\ndoes not match the preset block size of %d rows and %d columns.\nIt will not be added to the 3D image stack.',...
newTileSize(1), newTileSize(2), blockSizeR, blockSizeC);
uiwait(warndlg(warningMessage));
end
sliceNumber = sliceNumber + 1;
end
end
% Now image3D is a 3D image where each slice,
% or plane, is one quadrant of the original 2D image.
msgbox('Done with demo! Check out the two figures.');

Categories

Find more on Image Processing Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!