Solving linear system - but using only parts of the Matrix

1 view (last 30 days)
Hi everyone,
I'm trying to solve a linear system of equations but want to use only selectet rows for that operation.
For example:
D=
0 0 0 0 0.345265357599750 0.457309520629080 0.548726230994530 0 0 0 0
0 0 0 0 0.200398189744228 0.345265357599750 0.457309520629080 0 0 0 0
0 0 0 0 -0.00530900651840216 0.200398189744228 0.345265357599750 0 0 0 0
0 0 0 0 -0.369187964058863 -0.00530900651840216 0.200398189744228 0 0 0 0
0 0 0 0 -1.19314718055995 -0.369187964058863 -0.00530900651840216 0 0 0 0
0 0 0 0 -0.369187964058863 -1.19314718055995 -0.369187964058863 0 0 0 0
0 0 0 0 -0.00530900651840216 -0.369187964058863 -1.19314718055995 0 0 0 0
0 0 0 0 0.200398189744228 -0.00530900651840216 -0.369187964058863 0 0 0 0
0 0 0 0 0.345265357599750 0.200398189744228 -0.00530900651840216 0 0 0 0
0 0 0 0 0.457309520629080 0.345265357599750 0.200398189744228 0 0 0 0
0 0 0 0 0.548726230994530 0.457309520629080 0.345265357599750 0 0 0 0
U=
0
0
0
0
1.14881496080949e-07
3.47991801628408e-07
1.14881496080949e-07
0
0
0
0
I want to perform the operation
P=D\U
But only with the 3 rows that contain a result in the variable U.
P should be
P=
0
0
0
0
-7.42753614188724e-09
-2.87062227792614e-07
-7.42753614188723e-09
0
0
0
0
Can somebody help me, how to program this?
Very best
Christian

Accepted Answer

Star Strider
Star Strider on 3 May 2021
The lsqr function is appropriate here —
D = [...
0 0 0 0 0.345265357599750 0.457309520629080 0.548726230994530 0 0 0 0
0 0 0 0 0.200398189744228 0.345265357599750 0.457309520629080 0 0 0 0
0 0 0 0 -0.00530900651840216 0.200398189744228 0.345265357599750 0 0 0 0
0 0 0 0 -0.369187964058863 -0.00530900651840216 0.200398189744228 0 0 0 0
0 0 0 0 -1.19314718055995 -0.369187964058863 -0.00530900651840216 0 0 0 0
0 0 0 0 -0.369187964058863 -1.19314718055995 -0.369187964058863 0 0 0 0
0 0 0 0 -0.00530900651840216 -0.369187964058863 -1.19314718055995 0 0 0 0
0 0 0 0 0.200398189744228 -0.00530900651840216 -0.369187964058863 0 0 0 0
0 0 0 0 0.345265357599750 0.200398189744228 -0.00530900651840216 0 0 0 0
0 0 0 0 0.457309520629080 0.345265357599750 0.200398189744228 0 0 0 0
0 0 0 0 0.548726230994530 0.457309520629080 0.345265357599750 0 0 0 0];
U = [...
0
0
0
0
1.14881496080949e-07
3.47991801628408e-07
1.14881496080949e-07
0
0
0
0];
ix = U~=0;
format long g
P = lsqr(D(ix,:),U(ix))
lsqr converged at iteration 2 to a solution with relative residual 1e-15.
P = 11×1
0 0 0 0 -7.42753614188729e-09 -2.87062227792613e-07 -7.42753614188729e-09 0 0 0
format short
.

More Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!