Error in multiplying corresponding elements in two matrices

2 views (last 30 days)
Hello friends,
I am trying to multiply two matries element by element but I face an error as:
Unrecognized function or variable 'A1_m'.
Error in MyCode (line 106)
Alka= A1_m.*ka_m;
MyCode is:
% Parameters:% % Based on the layers properties.%
k1 = 0.25; k2 = 0.5; k3 = 0.2; k21= k2/k1; k32= k3/k2;
Lx = 40e-03;
Ly = 40e-03;
Lz1 = 0.08e-03; Lz2 = 2e-03; Lz3 = 10e-03;
a1 = 5.79e-08; a2 = 1.23e-07; a3 = 6.67e-08;
w1 = 0; w2 = 101; w3 = 137;
%Tb= ; Tts= ; Tini= ;
mu1= 80e+03 ; mu2= 2.4e+03 ; mu3= 1e+03 ;
qmet1= 368.1 ; qmet2= 367.1 ; qmet3= 368.1 ;
b1 = (n*pi/Lx)^2;
b2 = (n*pi/Lx)^2;
b3 = (n*pi/Lx)^2;
g1 = (m*pi/Ly)^2;
g2 = (m*pi/Ly)^2;
g3 = (m*pi/Ly)^2;
% Solving the Equations and Crating Solved Variable Matrix: %
% As a result of dependence of values of b1, b2, b3 and g1, g1, g3 on the
% n,m values, the equations should be solved for every n, m values separetely.
% For any n, m values a set of solution for s1,s2,s3,s21,s32 is achieved.
% So matrixes are defined for collecting all solutions together.
ss1= zeros(10, 10);
ss2= zeros(10, 10);
ss3= zeros(10, 10);
ss21= zeros(10, 10);
ss32= zeros(10, 10);
for n=1:10
for m=1:10
fhandle= @(X)fsolve_t(X,n,m);
X0= [120 12 100 0.1 8];
X = fsolve( fhandle, X0);
% Equation Coefficients in a Matrix:
A1= zeros(10,10);
B1= zeros(10,10);
A2= zeros(10,10);
B2= zeros(10,10);
A3= zeros(10,10);
B3= zeros(10,10);
for n=1:10
for m=1:10
A1= ones(n,m); % Assumptions for Simplification
B1= zeros(n,m); % for h=0 since B1(n,m)= (1/(k1*ss1(n,m)))*h*A1(n,m)
A2(n,m)= A1(n,m)*cos(ss1(n,m)*Lz1)+ B1(n,m)*sin(ss1(n,m)*Lz1);
B2(n,m)= (1/(k21*ss21(n,m)))*(-A1(n,m)*sin(ss1(n,m)*Lz1)+ B1(n,m)*cos(ss1(n,m)*Lz1));
A3(n,m)= A2(n,m)*cos(ss2(n,m)*Lz2)+ B2(n,m)*sin(ss2(n,m)*Lz2);
B3(n,m)= (1/(k32*ss32(n,m)))*(-A2(n,m)*sin(Lz2*ss2(n,m))+ B2(n,m)*cos(ss2(n,m)*Lz2));
% what should I do for n, m????
XI= (1- (-1)^n)/ sqrt(b1); % For every non-isolated layer: XI_i= int(sin (beta_i*x), 0, Lx)
YI= (1- (-1)^m)/ sqrt(g1); % For every non-isolated layer: YI_i= int(sin (gamma_i*y), 0, Ly)
ZI1_i1= A1(n,m)*sin(ss1(n,m)*Lz1)/ss1(n,m)-B1(n,m)*cos(ss1(n,m)*Lz1)/ss1(n,m)+B1(n,m)/ss1(n,m); % For every layer: ZI1_i= int(Ai*cos(s_i*z)+Bi*sin(s_i*z), 0, Lzi)
ZI1_i2= A2(n,m)*sin(ss2(n,m)*Lz2)/ss2(n,m)-B2(n,m)*cos(ss2(n,m)*Lz2)/ss2(n,m)+B2(n,m)/ss2(n,m);
ZI1_i3= A3(n,m)*sin(ss3(n,m)*Lz3)/ss3(n,m)-B3(n,m)*cos(ss3(n,m)*Lz3)/ss3(n,m)+B3(n,m)/ss3(n,m);
ZIl_m= [ZI1_i1 ZI1_i2 ZI1_i3];
Al_i1= (A1(n,m)^2 + B1(n,m)^2 )*Lz1/2+(A1(n,m)*B1(n,m)*(sin(ss1(n,m)*Lz1))^2/ss1(n,m))+(A1(n,m)^2-B1(n,m)^2)*sin(2*ss1(n,m)*Lz1)/(4*ss1(n,m)); % For every layer: Al_i= int((Ai*cos(s_i*z)+Bi*sin(s_i*z))^2, 0, Lzi)
Al_i2= (A2(n,m)^2 + B2(n,m)^2 )*Lz2/2+(A2(n,m)*B2(n,m)*(sin(ss2(n,m)*Lz2))^2/ss2(n,m))+(A2(n,m)^2-B2(n,m)^2)*sin(2*ss2(n,m)*Lz2)/(4*ss2(n,m));
Al_i3= (A3(n,m)^2 + B3(n,m)^2 )*Lz3/2+(A3(n,m)*B3(n,m)*(sin(ss3(n,m)*Lz3))^2/ss3(n,m))+(A3(n,m)^2-B3(n,m)^2)*sin(2*ss3(n,m)*Lz3)/(4*ss3(n,m));
Al_m= [Al_i1 Al_i2 Al_i3];
ka_m= [k1/a1 k2/a2 k3/a3];
Alka= A1_m.*ka_m;
Al= sum(Alka); % Al= sigma(ki/ai)*Al_i
What should I do now?
I do appreciate in advance for any kind of guidance!

Accepted Answer

Star Strider
Star Strider on 15 May 2021
It is often confusing to use ‘l’ (lower-case letter ‘L’) and ‘1’ (number ‘1’).
I suspect that is the problem.

More Answers (0)


Find more on Matrix Computations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!