# Error in multiplying corresponding elements in two matrices

2 views (last 30 days)
Mahsa Babaee on 15 May 2021
Commented: Star Strider on 16 May 2021
Hello friends,
I am trying to multiply two matries element by element but I face an error as:
Unrecognized function or variable 'A1_m'.
Error in MyCode (line 106)
Alka= A1_m.*ka_m;
MyCode is:
% Parameters:% % Based on the layers properties.%
k1 = 0.25; k2 = 0.5; k3 = 0.2; k21= k2/k1; k32= k3/k2;
Lx = 40e-03;
Ly = 40e-03;
Lz1 = 0.08e-03; Lz2 = 2e-03; Lz3 = 10e-03;
a1 = 5.79e-08; a2 = 1.23e-07; a3 = 6.67e-08;
w1 = 0; w2 = 101; w3 = 137;
%Tb= ; Tts= ; Tini= ;
mu1= 80e+03 ; mu2= 2.4e+03 ; mu3= 1e+03 ;
qmet1= 368.1 ; qmet2= 367.1 ; qmet3= 368.1 ;
n=1;
m=1;
b1 = (n*pi/Lx)^2;
b2 = (n*pi/Lx)^2;
b3 = (n*pi/Lx)^2;
g1 = (m*pi/Ly)^2;
g2 = (m*pi/Ly)^2;
g3 = (m*pi/Ly)^2;
% Solving the Equations and Crating Solved Variable Matrix: %
% As a result of dependence of values of b1, b2, b3 and g1, g1, g3 on the
% n,m values, the equations should be solved for every n, m values separetely.
% For any n, m values a set of solution for s1,s2,s3,s21,s32 is achieved.
% So matrixes are defined for collecting all solutions together.
ss1= zeros(10, 10);
ss2= zeros(10, 10);
ss3= zeros(10, 10);
ss21= zeros(10, 10);
ss32= zeros(10, 10);
for n=1:10
for m=1:10
fhandle= @(X)fsolve_t(X,n,m);
X0= [120 12 100 0.1 8];
X = fsolve( fhandle, X0);
ss1(n,m)=X(1);
ss2(n,m)=X(2);
ss3(n,m)=X(3);
ss21(n,m)=X(4);
ss32(n,m)=X(5);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Equation Coefficients in a Matrix:
A1= zeros(10,10);
B1= zeros(10,10);
A2= zeros(10,10);
B2= zeros(10,10);
A3= zeros(10,10);
B3= zeros(10,10);
for n=1:10
for m=1:10
A1= ones(n,m); % Assumptions for Simplification
B1= zeros(n,m); % for h=0 since B1(n,m)= (1/(k1*ss1(n,m)))*h*A1(n,m)
A2(n,m)= A1(n,m)*cos(ss1(n,m)*Lz1)+ B1(n,m)*sin(ss1(n,m)*Lz1);
B2(n,m)= (1/(k21*ss21(n,m)))*(-A1(n,m)*sin(ss1(n,m)*Lz1)+ B1(n,m)*cos(ss1(n,m)*Lz1));
A3(n,m)= A2(n,m)*cos(ss2(n,m)*Lz2)+ B2(n,m)*sin(ss2(n,m)*Lz2);
B3(n,m)= (1/(k32*ss32(n,m)))*(-A2(n,m)*sin(Lz2*ss2(n,m))+ B2(n,m)*cos(ss2(n,m)*Lz2));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% what should I do for n, m????
XI= (1- (-1)^n)/ sqrt(b1); % For every non-isolated layer: XI_i= int(sin (beta_i*x), 0, Lx)
YI= (1- (-1)^m)/ sqrt(g1); % For every non-isolated layer: YI_i= int(sin (gamma_i*y), 0, Ly)
ZI1_i1= A1(n,m)*sin(ss1(n,m)*Lz1)/ss1(n,m)-B1(n,m)*cos(ss1(n,m)*Lz1)/ss1(n,m)+B1(n,m)/ss1(n,m); % For every layer: ZI1_i= int(Ai*cos(s_i*z)+Bi*sin(s_i*z), 0, Lzi)
ZI1_i2= A2(n,m)*sin(ss2(n,m)*Lz2)/ss2(n,m)-B2(n,m)*cos(ss2(n,m)*Lz2)/ss2(n,m)+B2(n,m)/ss2(n,m);
ZI1_i3= A3(n,m)*sin(ss3(n,m)*Lz3)/ss3(n,m)-B3(n,m)*cos(ss3(n,m)*Lz3)/ss3(n,m)+B3(n,m)/ss3(n,m);
ZIl_m= [ZI1_i1 ZI1_i2 ZI1_i3];
Al_i1= (A1(n,m)^2 + B1(n,m)^2 )*Lz1/2+(A1(n,m)*B1(n,m)*(sin(ss1(n,m)*Lz1))^2/ss1(n,m))+(A1(n,m)^2-B1(n,m)^2)*sin(2*ss1(n,m)*Lz1)/(4*ss1(n,m)); % For every layer: Al_i= int((Ai*cos(s_i*z)+Bi*sin(s_i*z))^2, 0, Lzi)
Al_i2= (A2(n,m)^2 + B2(n,m)^2 )*Lz2/2+(A2(n,m)*B2(n,m)*(sin(ss2(n,m)*Lz2))^2/ss2(n,m))+(A2(n,m)^2-B2(n,m)^2)*sin(2*ss2(n,m)*Lz2)/(4*ss2(n,m));
Al_i3= (A3(n,m)^2 + B3(n,m)^2 )*Lz3/2+(A3(n,m)*B3(n,m)*(sin(ss3(n,m)*Lz3))^2/ss3(n,m))+(A3(n,m)^2-B3(n,m)^2)*sin(2*ss3(n,m)*Lz3)/(4*ss3(n,m));
Al_m= [Al_i1 Al_i2 Al_i3];
ka_m= [k1/a1 k2/a2 k3/a3];
Alka= A1_m.*ka_m;
Al= sum(Alka); % Al= sigma(ki/ai)*Al_i
What should I do now?
I do appreciate in advance for any kind of guidance!

Star Strider on 15 May 2021
It is often confusing to use ‘l’ (lower-case letter ‘L’) and ‘1’ (number ‘1’).
I suspect that is the problem.
##### 2 CommentsShowHide 1 older comment
Star Strider on 16 May 2021
As always, my pleasure!