Filter amplitude data as a function of time, calculating the time difference
3 views (last 30 days)
Show older comments
Along with greet,
I wanted to ask for help, please. I need to identify the wave with the highest amplitude (maximum peak), and intersect it with a threshold value, in this case 1.5, and identify the intersection points, that is, the nodes where the maximum peak curve intersects with the threshold value In order to identify node 1 and node 2, and calculate their difference (subtract both values), I attach an illustrative image of the problem. I attach the data, and a picture of the problem. Greetings.
close all, clear all, clc
data=load('data.txt');
t=0:10:4*3600;
plot(t,data)
xlabel('Time (s)'); ylabel('Amplitude (m)')
hold on
plot(t,1.5,'r')
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/640210/image.png)
2 Comments
Star Strider
on 3 Jun 2021
@ignacio bobadilla tapia — I appreciate your bringing this to my attention, however while my code worked with the original data, I could not make it work with any of the files added later, since they appear to have little in common with the first file. I added an Answer, however then deleted it for that reason.
Answers (1)
Mathieu NOE
on 2 Jun 2021
hello Ignacio
see figure(2) results
result is displayed in command window :
time distance dt = 440.9509 s at threshold value : 1.5
code is :
clc
clearvars
y=load('data.txt');
n=length(y);
dt = 10; %
Fs = 1/dt;
x=(1:n)*dt;
threshold = 1.5; % your value here
[t0_pos,s0_pos,t0_neg,s0_neg]= crossing_V7(y,x,threshold,'linear'); % positive (pos) and negative (neg) slope crossing points
% ind => time index (samples)
% t0 => corresponding time (x) values
% s0 => corresponding function (y) values , obviously they must be equal to "threshold"
figure(1)
plot(x,y,t0_pos,s0_pos,'+r',t0_neg,s0_neg,'+g','linewidth',2,'markersize',12);grid on
legend('signal','positive slope crossing points','negative slope crossing points');
xlabel('Time (s)');
% select pos and neg crossing points closest to the max peak
[val,ind] = max(y); % max peak
x_peak = x(ind);
[minValue, closestIndex] = min(abs(t0_pos - x_peak));
closestValue_pos = t0_pos(closestIndex);
[minValue, closestIndex] = min(abs(t0_neg - x_peak));
closestValue_neg = t0_neg(closestIndex);
figure(2)
plot(x,y,x_peak,val,'dr',closestValue_pos,threshold,'+r',closestValue_neg,threshold,'+g','linewidth',2,'markersize',12);grid on
legend('signal','signal max peak','positive slope crossing points','negative slope crossing points');
xlabel('Time (s)');
dt = closestValue_neg - closestValue_pos;
disp(['time distance dt = ' num2str(dt) ' s at threshold value : ' num2str(threshold)]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [t0_pos,s0_pos,t0_neg,s0_neg] = crossing_V7(S,t,level,imeth)
% [ind,t0,s0,t0close,s0close] = crossing_V6(S,t,level,imeth,slope_sign) % older format
% CROSSING find the crossings of a given level of a signal
% ind = CROSSING(S) returns an index vector ind, the signal
% S crosses zero at ind or at between ind and ind+1
% [ind,t0] = CROSSING(S,t) additionally returns a time
% vector t0 of the zero crossings of the signal S. The crossing
% times are linearly interpolated between the given times t
% [ind,t0] = CROSSING(S,t,level) returns the crossings of the
% given level instead of the zero crossings
% ind = CROSSING(S,[],level) as above but without time interpolation
% [ind,t0] = CROSSING(S,t,level,par) allows additional parameters
% par = {'none'|'linear'}.
% With interpolation turned off (par = 'none') this function always
% returns the value left of the zero (the data point thats nearest
% to the zero AND smaller than the zero crossing).
%
% [ind,t0,s0] = ... also returns the data vector corresponding to
% the t0 values.
%
% [ind,t0,s0,t0close,s0close] additionally returns the data points
% closest to a zero crossing in the arrays t0close and s0close.
%
% This version has been revised incorporating the good and valuable
% bugfixes given by users on Matlabcentral. Special thanks to
% Howard Fishman, Christian Rothleitner, Jonathan Kellogg, and
% Zach Lewis for their input.
% Steffen Brueckner, 2002-09-25
% Steffen Brueckner, 2007-08-27 revised version
% Copyright (c) Steffen Brueckner, 2002-2007
% brueckner@sbrs.net
% M Noe
% added positive or negative slope condition
% check the number of input arguments
error(nargchk(1,4,nargin));
% check the time vector input for consistency
if nargin < 2 | isempty(t)
% if no time vector is given, use the index vector as time
t = 1:length(S);
elseif length(t) ~= length(S)
% if S and t are not of the same length, throw an error
error('t and S must be of identical length!');
end
% check the level input
if nargin < 3
% set standard value 0, if level is not given
level = 0;
end
% check interpolation method input
if nargin < 4
imeth = 'linear';
end
% make row vectors
t = t(:)';
S = S(:)';
% always search for zeros. So if we want the crossing of
% any other threshold value "level", we subtract it from
% the values and search for zeros.
S = S - level;
% first look for exact zeros
ind0 = find( S == 0 );
% then look for zero crossings between data points
S1 = S(1:end-1) .* S(2:end);
ind1 = find( S1 < 0 );
% bring exact zeros and "in-between" zeros together
ind = sort([ind0 ind1]);
% and pick the associated time values
t0 = t(ind);
s0 = S(ind);
if ~isempty(ind)
if strcmp(imeth,'linear')
% linear interpolation of crossing
for ii=1:length(t0)
%if abs(S(ind(ii))) > eps(S(ind(ii))) % MATLAB V7 et +
if abs(S(ind(ii))) > eps*abs(S(ind(ii))) % MATLAB V6 et - EPS * ABS(X)
% interpolate only when data point is not already zero
NUM = (t(ind(ii)+1) - t(ind(ii)));
DEN = (S(ind(ii)+1) - S(ind(ii)));
slope = NUM / DEN;
slope_sign(ii) = sign(slope);
t0(ii) = t0(ii) - S(ind(ii)) * slope;
s0(ii) = level;
end
end
end
% extract the positive slope crossing points
ind_pos = find(sign(slope_sign)>0);
t0_pos = t0(ind_pos);
s0_pos = s0(ind_pos);
% extract the negative slope crossing points
ind_neg = find(sign(slope_sign)<0);
t0_neg = t0(ind_neg);
s0_neg = s0(ind_neg);
else
% empty output
ind_pos = [];
t0_pos = [];
s0_pos = [];
% extract the negative slope crossing points
ind_neg = [];
t0_neg = [];
s0_neg = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Addition:
% % Some people like to get the data points closest to the zero crossing,
% % so we return these as well
% [CC,II] = min(abs([S(ind-1) ; S(ind) ; S(ind+1)]),[],1);
% ind2 = ind + (II-2); %update indices
%
% t0close = t(ind2);
% s0close = S(ind2);
end
3 Comments
Mathieu NOE
on 3 Jun 2021
hello again
this is a simple for loop
the main code has been converted into a function to make the whole thing easier to read
you can disable the figure plot if you don't need it;
I saw that at the beginning of some records there is a bit of noise / oscillations , so I wonder if we need to do a bit of smoothing first ? I leave it to you
so final code :
clc
clearvars
threshold = 1.5; % your value here
for ci = 1:7
y=load(['data' num2str(ci) '.txt']);
y = y/100; % convert cm to m
dt(ci) = compute_dt(y,threshold);
disp(['time distance dt = ' num2str(dt(ci)) ' s at threshold value : ' num2str(threshold)]);
end
function dt = compute_dt(y,threshold)
n=length(y);
dt = 10; %
Fs = 1/dt;
x=(1:n)*dt;
% threshold = 1.5; % your value here
[t0_pos,s0_pos,t0_neg,s0_neg]= crossing_V7(y,x,threshold,'linear'); % positive (pos) and negative (neg) slope crossing points
% ind => time index (samples)
% t0 => corresponding time (x) values
% s0 => corresponding function (y) values , obviously they must be equal to "threshold"
% select pos and neg crossing points closet to the max peak
[val,ind] = max(y); % max peak
x_peak = x(ind);
[minValue, closestIndex] = min(abs(t0_pos - x_peak));
closestValue_pos = t0_pos(closestIndex);
[minValue, closestIndex] = min(abs(t0_neg - x_peak));
closestValue_neg = t0_neg(closestIndex);
figure()
plot(x,y,x_peak,val,'dr',closestValue_pos,threshold,'+r',closestValue_neg,threshold,'+g','linewidth',2,'markersize',12);grid on
legend('signal','signal max peak','positive slope crossing points','negative slope crossing points');
xlabel('Time (s)');
dt = closestValue_neg - closestValue_pos;
% disp(['time distance dt = ' num2str(dt) ' s at threshold value : ' num2str(threshold)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [t0_pos,s0_pos,t0_neg,s0_neg] = crossing_V7(S,t,level,imeth)
% [ind,t0,s0,t0close,s0close] = crossing_V6(S,t,level,imeth,slope_sign) % older format
% CROSSING find the crossings of a given level of a signal
% ind = CROSSING(S) returns an index vector ind, the signal
% S crosses zero at ind or at between ind and ind+1
% [ind,t0] = CROSSING(S,t) additionally returns a time
% vector t0 of the zero crossings of the signal S. The crossing
% times are linearly interpolated between the given times t
% [ind,t0] = CROSSING(S,t,level) returns the crossings of the
% given level instead of the zero crossings
% ind = CROSSING(S,[],level) as above but without time interpolation
% [ind,t0] = CROSSING(S,t,level,par) allows additional parameters
% par = {'none'|'linear'}.
% With interpolation turned off (par = 'none') this function always
% returns the value left of the zero (the data point thats nearest
% to the zero AND smaller than the zero crossing).
%
% [ind,t0,s0] = ... also returns the data vector corresponding to
% the t0 values.
%
% [ind,t0,s0,t0close,s0close] additionally returns the data points
% closest to a zero crossing in the arrays t0close and s0close.
%
% This version has been revised incorporating the good and valuable
% bugfixes given by users on Matlabcentral. Special thanks to
% Howard Fishman, Christian Rothleitner, Jonathan Kellogg, and
% Zach Lewis for their input.
% Steffen Brueckner, 2002-09-25
% Steffen Brueckner, 2007-08-27 revised version
% Copyright (c) Steffen Brueckner, 2002-2007
% brueckner@sbrs.net
% M Noe
% added positive or negative slope condition
% check the number of input arguments
error(nargchk(1,4,nargin));
% check the time vector input for consistency
if nargin < 2 | isempty(t)
% if no time vector is given, use the index vector as time
t = 1:length(S);
elseif length(t) ~= length(S)
% if S and t are not of the same length, throw an error
error('t and S must be of identical length!');
end
% check the level input
if nargin < 3
% set standard value 0, if level is not given
level = 0;
end
% check interpolation method input
if nargin < 4
imeth = 'linear';
end
% make row vectors
t = t(:)';
S = S(:)';
% always search for zeros. So if we want the crossing of
% any other threshold value "level", we subtract it from
% the values and search for zeros.
S = S - level;
% first look for exact zeros
ind0 = find( S == 0 );
% then look for zero crossings between data points
S1 = S(1:end-1) .* S(2:end);
ind1 = find( S1 < 0 );
% bring exact zeros and "in-between" zeros together
ind = sort([ind0 ind1]);
% and pick the associated time values
t0 = t(ind);
s0 = S(ind);
if ~isempty(ind)
if strcmp(imeth,'linear')
% linear interpolation of crossing
for ii=1:length(t0)
%if abs(S(ind(ii))) > eps(S(ind(ii))) % MATLAB V7 et +
if abs(S(ind(ii))) > eps*abs(S(ind(ii))) % MATLAB V6 et - EPS * ABS(X)
% interpolate only when data point is not already zero
NUM = (t(ind(ii)+1) - t(ind(ii)));
DEN = (S(ind(ii)+1) - S(ind(ii)));
slope = NUM / DEN;
slope_sign(ii) = sign(slope);
t0(ii) = t0(ii) - S(ind(ii)) * slope;
s0(ii) = level;
end
end
end
% extract the positive slope crossing points
ind_pos = find(sign(slope_sign)>0);
t0_pos = t0(ind_pos);
s0_pos = s0(ind_pos);
% extract the negative slope crossing points
ind_neg = find(sign(slope_sign)<0);
t0_neg = t0(ind_neg);
s0_neg = s0(ind_neg);
else
% empty output
ind_pos = [];
t0_pos = [];
s0_pos = [];
% extract the negative slope crossing points
ind_neg = [];
t0_neg = [];
s0_neg = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Addition:
% % Some people like to get the data points closest to the zero crossing,
% % so we return these as well
% [CC,II] = min(abs([S(ind-1) ; S(ind) ; S(ind+1)]),[],1);
% ind2 = ind + (II-2); %update indices
%
% t0close = t(ind2);
% s0close = S(ind2);
end
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!